

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

title: LIQUIDSOAP
section: 1
date: Jul 24, 2019
header: Liquidsoap @version@
footer: Liquidsoap @version@
…

NAME

liquidsoap - a multimedia streaming language

SYNOPSIS

liquidsoap [options] [script | expression]

DESCRIPTION

Liquidsoap is a programming language for describing multimedia streaming systems.
It is very flexible, making simple things simple but giving a lot
of control for advanced uses. Liquidsoap
supports audio, video and MIDI streams,
and a wide range of input/output operators
including Icecast and various soundcard APIs.
It can perform a broad range of signal processing,
combine streams in various ways, support custom transitions,
generate sound procedurally…
and all this can be assembled as you wish.
Input files can be accessed remotely, or even be synthesized on the fly
using external scripts such as speech synthesis.
Finally, interaction with a running liquidsoap instance is possible
via telnet or socket.

Liquidsoap scripts passed on the command line will be evaluated: they shall be
used to define the streaming system to be ran. It is possible to pass multiple
scripts; they will all be ran successively, and definitions from one script can
be used in subsequent ones. A script will be read from standard input if - is
given as script filename. Information about scripting liquidsoap is available
on our website: http://liquidsoap.info/.

If the parameter is not a file it will be treated as an expression which will
be executed. It is a convenient way to test simple one-line scripts. When
running only one-liners, the default is to log messages directly on stdout
rather than to a file.

OPTIONS

-
: Read script from standard input.

--
: Stop parsing the command-line and pass subsequent items to the
script.

--debug
: Print debugging log messages.

--dynamic-plugins-dir path
: Directory where to look for plugins.

--errors-as-warnings
: Issue warnings instead of fatal errors for unused variables and ignored
expressions. If you are not sure about it, it is better to not use it.

--interactive
: Start an interactive interpreter.

--list-plugins
: List all plugins (builtin scripting values, supported formats and protocols).

--list-plugins-xml
: List all plugins (builtin scripting values, supported formats and protocols), output as XML.

--no-stdlib
: Do not load pervasive script libraries.

--version
: Display Liquidsoap’s version.

--build-config
: Display Liquidsoap’s build config.

-c, --check
: Check and evaluate scripts but do not perform any streaming.

-cl, --check-lib
: Like --check but treats all scripts and expressions as libraries, so that
unused toplevel variables are not reported.

-d, --daemon
: Run in daemon mode.

-f, --force-start
: For advanced dynamic uses: force liquidsoap to start even when no active
source is initially defined.

-h plugin
: Print the description of a plugin, eg. a builtin scripting function.

-i
: Display inferred types.

-p, –parse-only
: Parse scripts but do not type-check and run them.

-q, --quiet
: Do not print log messages on standard output.

-r filename
: Process a request.

-T, --disable-telnet
: Disable the telnet server.

-U, --disable-unix-socket
: Disable the unix socket.

-t, --enable-telnet
: Enable the telnet server.

-u, --enable-unix-socket
: Enable the unix socket.

-v, --verbose
: Print log messages on standard output.

--list-settings
: Show all settings with their documentation.

-help, --help
Display this list of options

SEE ALSO

Our website http://liquidsoap.info/ and the HTML
documentation coming with your distribution of Liquidsoap.

AUTHOR

The savonet team.

Integrating a music library: an example with Beets

Liquidsoap’s native sources can read from files and folders,
but if your radio uses an important music library
(more than a thousand tracks)
sorting by folders may not be enough.
You will also need to adjust the playout gain per track (ReplayGain).
In that case you would better have a music library
queried by Liquidsoap.
In this section we’ll do this with Beets [http://beets.io/].
Beets holds your music catalog,
cleans tracks’ tags before importing,
can compute each track’s ReplayGain,
and most importantly has a command-line interface we can leverage from Liquidsoap.
The following examples may also inspire you to integrate another library or your own scripts.

After installing Beets,
enable the random plug-in
(see Beets documentation on plug-ins [https://beets.readthedocs.io/en/stable/plugins/index.html#using-plugins]).
To enable gain normalization, install and configure the
replaygain [https://beets.readthedocs.io/en/stable/plugins/replaygain.html] plug-in.
To easily add single tracks to you library,
you might also be interested in the
drop2beets [https://github.com/martinkirch/drop2beets#drop2beets] plug-in.
The following examples suppose you defined a BEET constant,
which contains the complete path to your beet executable (on UNIX systems, find it with which beet). For example:

BEET = "/home/radio/.local/bin/beet"

Before creating a Liquidsoap source,
let’s see why Beets queries are interesting for a radio.

Beets queries

Queries are parameters that you usually provide to the beet ls command :
Beets will find matching tracks.
The random plug-in works the same, except that it returns only one track matching the query
(see the plug-in’s documentation [https://beets.readthedocs.io/en/stable/plugins/random.html]).
Once your library is imported,
you can try the following queries on the command line
by typing beet ls [query] or beet random [query].
To test quickly, add the -t 60 option to beet random
so it will select an hour worth of tracks matching your query.

Without selectors, queries search in a track’s title, artist, album name,
album artist, genre and comments. Typing an artist name or a complete title
usually match the exact track, and you could do a lovely playlist just by querying love.

But in a radio you’ll usually query on other fields.
You can select tracks by genre with the genre: selector.
Be careful that genre:Rock also matches Indie Rock, Punk Rock, etc.
To select songs having english lyrics, use language:eng.
Or pick 80s songs with year:1980..1990.

Beets also holds internal meta-data, like added:
the date and time when you imported each song.
You can use it to query tracks inserted over the past month with added:-1m...
Or you can query track imported more than a year ago with added:..-1y.
Beets also lets you
set your own tags [https://beets.readthedocs.io/en/stable/guides/advanced.html#store-any-data-you-like].

You can use the info plug-in to see everything Beets knows about title(s) matching a query
by typing beet info -l [query].
See also the Beets’ documentation [https://beets.readthedocs.io/en/stable/reference/query.html]
for more details on queries operators.
All these options should allow you to create both general and specialiazed Liquidsoap sources.

A source querying each next track from Beets

As of Liquidsoap 2.x we can create a function that creates a dynamic source,
given its id and a Beet query.
We rely on request.dynamic to call beet random
(with -f '$path' option so beets only returns the matching track’s path)
every time the source must prepare a new track:

def beets(id, query) =
 beets_src =
 request.dynamic(id=id, retry_delay=1., {
 request.create(
 string.trim(
 process.read("#{BEET} random -f '$path' #{query}")
)
)
 })
 (beets_src:source)
end

all_music = beets("all_music", "")
recent_music = beets("recent_music", "added:-1m..")
rock_music = beets("rock_music", "genre:Rock")

Note that

	query can be empty, it will match all tracks in the library.

	we set retry_delay to a second, to avoid looping on beet calls if something goes wrong.

	The final type hint (:source) will avoid false typing errors when the source is integrated in complex operators.

Applying ReplayGain

When the replaygain plug-in [https://beets.readthedocs.io/en/stable/plugins/replaygain.html]
is enabled, all tracks will have an additional metadata field called replaygain_track_gain.
Check that Beet is configured to
write ID3 tags [https://beets.readthedocs.io/en/stable/reference/config.html#importer-options]
so Liquidsoap will be able to read this metadata -
your Beet configuration should include something like:

import:
 write: yes

Then we only need to add amplify to our source creation function. In the example below we also add blank.eat, to automatically cut silence at the beginning or end of tracks.

def beets(id, query) =
 beets_src =
 blank.eat(id="#{id}_", start_blank=true, max_blank=1.0, threshold=-45.0,
 amplify(override="replaygain_track_gain", 1.0,
 request.dynamic(id=id, retry_delay=1., {
 request.create(
 string.trim(
 process.read("#{BEET} random -f '$path' #{query}")
)
)
 })
)
)
 (beets_src:source)
end

This is the recommended Beets integration ;
such source will provide music continuously,
at a regular volume.

Beets as a requests protocol

If you’re queueing tracks with request.queue,
you may prefer to integrate Beets as a protocol.
In that case,
the list of paths returned by beet random -f '$path' fits directly
what’s needed by protocol resolution:

def beets_protocol(~rlog,~maxtime,arg) =
 timeout = maxtime - time()
 command = "#{BEET} random -f '$path' #{arg}"
 p = process.run(timeout=timeout, command)
 if p.status == "exit" and p.status.code == 0 then
 [string.trim(p.stdout)]
 else
 rlog("Failed to execute #{command}: #{p.status} (#{p.status.code}) #{p.stderr}")
 []
 end
end
protocol.add("beets", beets_protocol,
 syntax = "same arguments as beet's random module, see https://beets.readthedocs.io/en/stable/reference/query.html"
)

Once this is done,
you can push a beets query from the telnet server:
if you created request.queue(id="userrequested"),
the server command
userrequested.push beets:All along the watchtower
will push the Jimi Hendrix’s song.

With this method, you can benefit from replay gain metadata too, by wrapping
the recipient queue in an amplify operator, like

userrequested = amplify(override="replaygain_track_gain", 1.0,
 request.queue(id="userrequested")
)

Blank detection

Liquidsoap has three operators for dealing with blanks.

On GeekRadio, we play many files, some of which include bonus tracks, which
means that they end with a very long blank and then a little extra music. It’s
annoying to get that on air. The blank.skip operator skips the
current track when a too long blank is detected, which avoids that. The typical
usage is simple:

Wrap it with a blank skipper
source = blank.skip(source)

At RadioPi [http://www.radiopi.org/] they have another problem: sometimes they
have technical problems, and while they think they are doing a live show,
they’re making noise only in the studio, while only blank is on air; sometimes,
the staff has so much fun (or is it something else ?) doing live shows that they
leave at the end of the show without thinking to turn off the live, and the
listeners get some silence again. To avoid that problem we made the
blank.strip operators which hides the stream when it’s too blank
(i.e. declare it as unavailable), which perfectly suits the typical setup used
for live shows:

interlude = single("/path/to/sorryfortheblank.ogg")
After 5 sec of blank the microphone stream is ignored,
which causes the stream to fallback to interlude.
As soon as noise comes back to the microphone the stream comes
back to the live -- thanks to track_sensitive=false.
stream = fallback(track_sensitive=false,
 [blank.strip(max_blank=5.,live) , interlude])

Put that stream to a local file
output.file(%vorbis, "/tmp/hop.ogg", stream)

If you don’t get the difference between these two operators, you should learn
more about liquidsoap’s notion of source.

Finally, if you need to do some custom action when there’s too much blank, we
have blank.detect:

def handler()
 system("/path/to/your/script to do whatever you want")
end
source = blank.detect(handler,source)

The Liquidsoap book

Together with the release of Liquidsoap 2.0, we have written the Liquidsoap
book which covers in details the language and the process of building a
radio. It complements the online documentation by providing a homogeneous and
progressive presentation of Liquidsoap.

[image: assets/img/book.svg]The Liquidsoap book{height=600px} [https://www.amazon.com/dp/B095PVTYR3]

It can be ordered from Amazon [https://www.amazon.com/dp/B095PVTYR3]
(or read online [http://www.liquidsoap.info/book/book.pdf]).

Building Liquidsoap

Forewords

Installing liquidsoap can be a difficult task. The software relies on a up-to date
OCaml compiler, as well as a bunch of OCaml modules and, for most of them, corresponding
C library dependencies.

Our recommended way of installing liquidsoap is via opam [http://opam.ocaml.org/]. opam can take
care of installing the correct OCaml compiler, optional and required dependencies as well as system-specific
package dependencies.

The opam method is described in details in the documentation.
We recommend that any interested user head over to this link to install the software via opam.

The remainder of this document describes how to compile liquidsoap locally for developers.

Overview

Liquidsoap is compiled using dune [https://dune.readthedocs.io/en/stable/], which is the most popular
OCaml build system at the moment. dune is tightly integrated with opam so, even if you are installing
from source using dune, opam remains an important tool.

Generally speaking, compiling from source may require the latest version of the liquidsoap code as well as its
dependencies. Some of its dependencies are optional and can be ignored at first and some are not.

Keep in mind that, although opam is generally aware of required minimal version for dependencies, dune is not.
If a dependency is outdated, dune compilation will simply fail, at which point your may have to figure out if
you need to update a dependency.

Each branch of liquidsoap is compiled using github actions [https://github.com/savonet/liquidsoap/actions]. When trying
to build a specific branch, if the CI passes with it then, most likely, you are missing a dependency or it is not
the latest version.

opam pinning

opam pinning is a mechanism to update opam with the latest version of a package, even before it is published to
the official opam repository. This is the easiest way to update a dependency to its latest version.

You can pin directly from a local git repository checkout:

git clone https://github.com/savonet/ocaml-metadata.git
cd ocaml-metadata
opam pin -ny .

You can also pin directly using a git url:

opam pin -ny git+https://github.com/savonet/ocaml-cry

See opam pin --help for more defails about the available options.

Dependencies

The best way to figure out what dependencies are required or optional and their versions is to use the latest opam
package. Since liquidsoap development is using dune and opam, the dependencies are kept in sync via the
local liquidsoap opam package(s) and this serves as the de-facto list of dependencies and their versions.

First, you should pin the latest liquidsoap code:

opam pin -ny git+https://github.com/savonet/liquidsoap

Then, ask opam to list all the dependencies for liquidsoap:

opam info liquidsoap
opam info liquidsoap-core
opam info liquidsoa-lang

This should give you a (long!) list of all dependencies. Then, you can query opam to see
what each dependency does. This is particularly useful for optional dependencies on liquidsoap-core
which provide opt-in features. For instance opam info soundtouch will let you know that this
package provides functions for changing pitch and timestretching audio data.

Lastly, there are two types of dependencies:

	Dependencies maintained by us

	Dependencies not maintained by us

For dependencies not maintained by us, most of the time, we rely on the latest published version. Very rarely should you
have to fetch/pin the latest version of these dependencies.

For dependencies maintained by us, we may break their API during our development cycle and you maybe have to fetch/pin
the latest version when compilign the latest liquidsoap code. You may also have to check out a specific
branch when compiling liquidsoap from a specific development branch when the changes in the liquidsoap code are paired with
changes in one of our dependencies. Typically, this happens a lof with the ffmpeg binding.

Compiling

Once you have all dependencies installed, you should be able to compile via:

dune build

If an error occurs, you may need to see if you need to update a dependency. Hopefully, with a short iteration of this cycle,
you will end up with a successful build!

Once you have a successful build, you can also use the top-level liquidsoap script. This script builds the latest code and
executes it right away. It works as if you were calling the liquidsoap binary after installing it:

./liquidsoap -h output.ao

From here, you can start changing code, testing script etc. Happy hacking!

Clocks

In the quickstart and in the introduction to liquidsoap
sources, we have described a simple world in which sources
communicate with each other, creating and transforming data that
composes multimedia streams.
In this simple view, all sources produce data at the same rate,
animated by a single clock: at every cycle of the clock,
a fixed amount of data is produced.

While this simple picture is useful to get a fair idea of what’s going on
in liquidsoap, the full picture is more complex: in fact, a streaming
system might involve multiple clocks, or in other words several
time flows.

It is only in very particular cases that liquidsoap scripts
need to mention clocks explicitly. Otherwise, you won’t even notice
how many clocks are involved in your setup: indeed, liquidsoap can figure
out the clocks by itself, much like it infers types.
Nevertheless, there will sometimes be cases where your script cannot
be assigned clocks in a correct way, in which case liquidsoap will
complain. For that reason, every user should eventually get a minimum
understanding of clocks.

In the following, we first describe why we need clocks.
Then we go through the possible errors that any user might encounter
regarding clocks.
Finally, we describe how to explicitly use clocks,
and show a few striking examples of what can be achieved that way.

Why multiple clocks

The first reason is external to liquidsoap: there is simply
not a unique notion of time in the real world.
Your computer has an internal clock which indicates
a slightly different time than your watch or another computer’s clock.
Moreover, when communicating with a remote computer, network
latency causes extra time distortions.
Even within a single computer there are several clocks: notably, each
soundcard has its own clock, which will tick at a slightly different
rate than the main clock of the computer.
Since liquidsoap communicates with soundcards and remote computers,
it has to take those mismatches into account.

There are also some reasons that are purely internal to liquidsoap:
in order to produce a stream at a given speed,
a source might need to obtain data from another source at
a different rate. This is obvious for an operator that speeds up or
slows down audio (stretch). But it also holds more subtly
for cross, cross as well as the
derived operators: during the lapse of time where the operator combines
data from an end of track with the beginning of the other other,
the crossing operator needs twice as much stream data. After ten tracks,
with a crossing duration of six seconds, one more minute will have
passed for the source compared to the time of the crossing operator.

In order to avoid inconsistencies caused by time differences,
while maintaining a simple and efficient execution model for
its sources, liquidsoap works under the restriction that
one source belongs to a unique clock,
fixed once for all when the source is created.

The graph representation of streaming systems can be adapted
into a good representation of what clocks mean.
One simply needs to add boxes representing clocks:
a source can belong to only one box,
and all sources of a box produce streams at the same rate.
For example,

output.icecast(fallback([crossfade(playlist(...)),jingles]))

yields the following graph:

[image: assets/img/graph_clocks.png]Graph representation with clocks

Here, clock_2 was created specifically for the crossfading
operator; the rate of that clock is controlled by that operator,
which can hence accelerate it around track changes without any
risk of inconsistency.
The other clock is simply a CPU-based clock, so that the main stream
is produced following the ``real’’ time rate.

Error messages

Most of the time you won’t have to do anything special about clocks:
operators that have special requirements regarding clocks will do
what’s necessary themselves, and liquidsoap will check that everything is
fine. But if the check fails, you’ll need to understand the error,
which is what this section is for.

Disjoint clocks

On the following example, liquidsoap will issue the fatal error
a source cannot belong to two clocks:

s = playlist("~/media/audio")
output.alsa(s) # perhaps for monitoring
output.icecast(mount="radio.ogg",%vorbis,crossfade(s))

Here, the source s is first assigned the ALSA clock,
because it is tied to an ALSA output.
Then, we attempt to build a crossfade over s.
But this operator requires its source to belong to a dedicated
internal clock (because crossfading requires control over the flow
of the of the source, to accelerate it around track changes).
The error expresses this conflict:
s must belong at the same time to the ALSA clock
and crossfade’s clock.

Nested clocks

On the following example, liquidsoap will issue the fatal error
cannot unify two nested clocks:

jingles = playlist("jingles.lst")
music = rotate([1,10],[jingles,playlist("remote.lst")])
safe = rotate([1,10],[jingles,single("local.ogg")])
q = fallback([crossfade(music),safe])

Let’s see what happened.
The rotate operator, like most operators, operates
within a single clock, which means that jingles
and our two playlist instances must belong to the same clock.
Similarly, music and safe must belong to that
same clock.
When we applied crossfading to music,
the crossfade operator created its own internal clock,
call it cross_clock,
to signify that it needs the ability to accelerate at will the
streaming of music.
So, music is attached to cross_clock,
and all sources built above come along.
Finally, we build the fallback, which requires that all of its
sources belong to the same clock.
In other words, crossfade(music) must belong
to cross_clock just like safe.
The error message simply says that this is forbidden: the internal
clock of our crossfade cannot be its external clock – otherwise
it would not have exclusive control over its internal flow of time.

The same error also occurs on add([crossfade(s),s]),
the simplest example of conflicting time flows, described above.
However, you won’t find yourself writing this obviously problematic
piece of code. On the other hand, one would sometimes like to
write things like our first example.

The key to the error with our first example is that the same
jingles source is used in combination with music
and safe. As a result, liquidsoap sees a potentially
nasty situation, which indeed could be turned into a real mess
by adding just a little more complexity. To obtain the desired effect
without requiring illegal clock assignments, it suffices to
create two jingle sources, one for each clock:

music = rotate([1,10],[playlist("jingles.lst"),
 playlist("remote.lst")])
safe = rotate([1,10],[playlist("jingles.lst"),
 single("local.ogg")])
q = fallback([crossfade(music),safe])

There is no problem anymore: music belongs to
crossfade’s internal clock, and crossfade(music),
safe and the fallback belong to another clock.

The clock API

There are only a couple of operations dealing explicitly with clocks.

The function clock.assign_new(l) creates a new clock
and assigns it to all sources from the list l.
For convenience, we also provide a wrapper, clock(s)
which does the same with a single source instead of a list,
and returns that source.
With both functions, the new clock will follow (the computer’s idea of)
real time, unless sync=false is passed, in which case
it will run as fast as possible.

The old (pre-1.0.0) setting root.sync is superseded
by clock.assign_new().
If you want to run an output as fast as your CPU allows,
just attach it to a new clock without synchronization:

clock.assign_new(sync="none",[source])

This will automatically attach the appropriate sources to that clock.

Another important use case of this operator is if your script involves multiple sources from the same external clock, typically multiple ALSA input or output from the same sound card or multiple jack input and output. By default (the so-called clock_safe mode), liquidsoap will assign a dedicated clock to each of those sources, leading either to an error or forcing the use of an unnecessary buffer (see below). Instead, you can allocate each source with clock_safe=false and assign them a single clock:

s1 = input.jack(clock_safe=false, ...)
s2 = input.jack(clock_safe=false, ...)

clock.assign_new([s1,s2])

However, you may need to do it for other operators if they are totally
unrelated to the first one.

The buffer() operator can be used to communicate between
any two clocks: it takes a source in one clock and builds a source
in another. The trick is that it uses a buffer: if one clock
happens to run too fast or too slow, the buffer may empty or overflow.

Finally, get_clock_status provides information on
existing clocks and track their respective times:
it returns a list containing for each clock a pair
(name,time) indicating
the clock id its current time in clock cycles –
a cycle corresponds to the duration of a frame,
which is given in ticks, displayed on startup in the logs.
The helper function log_clocks built
around get_clock_status can be used to directly
obtain a simple log file, suitable for graphing with gnuplot.
Those functions are useful to debug latency issues.

External clocks: decoupling latencies

The first reason to explicitly assign clocks is to precisely handle
the various latencies that might occur in your setup.

Most input/output operators (ALSA, AO, Jack, OSS, etc)
require their own clocks. Indeed, their processing rate is constrained
by external sound APIs or by the hardware itself.
Sometimes, it is too much of an inconvenience,
in which case one can set clock_safe=false to allow
another clock assignment –
use at your own risk, as this might create bad latency interferences.

Currently, output.icecast does not require to belong
to any particular clock. This allows to stream according to the
soundcard’s internal clock, like in most other tools:
in output.icecast(%vorbis,mount="live.ogg",input.alsa()),
the ALSA clock will drive the streaming of the soundcard input via
icecast.

Sometimes, the external factors tied to Icecast output cannot be
disregarded: the network may lag. If you stream a soundcard input
to Icecast and the network lags, there will be a glitch in the
soundcard input – a long enough lag will cause a disconnection.
This might be undesirable, and is certainly disappointing if you
are recording a backup of your precious soundcard input using
output.file: by default it will suffer the same
latencies and glitches, while in theory it could be perfect.
To fix this you can explicitly separate Icecast (high latency,
low quality acceptable) from the backup and soundcard input (low latency,
high quality wanted):

input = input.oss()

Icecast source, with its own clock:
icecast_source = mksafe(buffer(input))
clock.assign_new(id="icecast", [icecast_source])

Output to icecast:
output.icecast(%mp3,mount="blah",icecast_source)

File output:
output.file(
 %mp3,"record-%Y-%m-%d-%H-%M-%S.mp3",
 input)

Here, the soundcard input and file output end up in the OSS
clock. The icecast output
goes to the explicitly created "icecast" clock,
and a buffer is used to
connect it to the soundcard input. Small network lags will be
absorbed by the buffer. Important lags and possible disconnections
will result in an overflow of the buffer.
In any case, the OSS input and file output won’t be affected
by those latencies, and the recording should be perfect.
The Icecast quality is also better with that setup,
since small lags are absorbed by the buffer and do not create
a glitch in the OSS capture, so that Icecast listeners won’t
notice the lag at all.

Internal clocks: exploiting multiple cores

Clocks can also be useful even when external factors are not an issue.
Indeed, several clocks run in several threads, which creates an opportunity
to exploit multiple CPU cores.
The story is a bit complex because OCaml has some limitations on
exploiting multiple cores, but in many situations most of the computing
is done in C code (typically decoding and encoding) so it parallelizes
quite well.

Typically, if you run several outputs that do not share much (any) code,
you can put each of them in a separate clock.
For example the following script takes one file and encodes it as MP3
twice. You should run it as liquidsoap EXPR -- FILE
and observe that it fully exploits two cores:

def one()
 s = single(argv(1))
 clock.assign_new(sync="none",[s])
 output.file(%mp3,"/dev/null",s)
end
one()
one()

A complete case analysis

We will develop here a more complex example, according to the following specifications:

	play different playlists during the day;

	play user requests – done via the telnet server;

	insert about 1 jingle every 5 songs;

	add one special jingle at the beginning of every hour, mixed on top of the normal stream;

	relay live shows as soon as one is available;

	and set up several outputs.

Once you’ve managed to describe what you want in such a modular way, you’re half the way. More precisely, you should think of a diagram such as the following, through which the audio streams flow, following the arrows. The nodes can modify the stream using some basic operators: switching and mixing in our case. The final nodes, the ends of the paths, are outputs: they are in charge of pulling the data out of the graph and send it to the world. In our case, we only have outputs to icecast, using two different formats.

[image: assets/img/liqgraph.png]Graph for 'radio.liq'

Now here is how to write that in Liquidsoap.

#!/usr/bin/liquidsoap

Lines starting with # are comments, they are ignored.

Put the log file in some directory where
you have permission to write.
log.file.path := "/tmp/<script>.log"
Print log messages to the console,
can also be done by passing the -v option to liquidsoap.
log.stdout := true
Use the telnet server for requests
settings.server.telnet := true

A bunch of files and playlists,
supposedly all located in the same base dir.

default = single("~/radio/default.ogg")

day = playlist("~/radio/day.pls")
night = playlist("~/radio/night.pls")
jingles = playlist("~/radio/jingles.pls")
clock = single("~/radio/clock.ogg")

Play user requests if there are any,
otherwise one of our playlists,
and the default file if anything goes wrong.
radio = fallback([request.queue(id="request"),
 switch([({ 6h-22h }, day),
 ({ 22h-6h }, night)]),
 default])
Add the normal jingles
radio = random(weights=[1,5],[jingles, radio])
And the clock jingle
radio = add([radio, switch([({0m0s},clock)])])

Add the ability to relay live shows
full =
 fallback(track_sensitive=false,
 [input.http("http://localhost:8000/live.ogg"),
 radio])

Output the full stream in OGG and MP3
output.icecast(%mp3,
 host="localhost",port=8000,password="hackme",
 mount="radio",full)
output.icecast(%vorbis,
 host="localhost",port=8000,password="hackme",
 mount="radio.ogg",full)

Output the stream without live in OGG
output.icecast(%vorbis,
 host="localhost",port=8000,password="hackme",
 mount="radio_nolive.ogg",radio)

To try this example you need to edit the file names. In order to witness the switch from one playlist to another you can change the time intervals. If it is 16:42, try the intervals 0h-16h45 and 16h45-24h instead of 6h-22h and 22h-6h. To witness the clock jingle, you can ask for it to be played every minute by using the 0s interval instead of 0m0s.

To try the transition to a live show you need to start a new stream on the live.ogg mount of your server. You can send a playlist to it using examples from the quickstart. To start a real live show from soundcard input you can use darkice, or simply liquidsoap if you have a working ALSA input, with:

liquidsoap 'output.icecast(%vorbis, \
 mount="live.ogg",host="...",password="...",input.alsa())'

Cookbook

The recipes show how to build a source with a particular feature. You can try short snippets by wrapping the code in an output(..) operator and passing it directly to liquidsoap:

liquidsoap -v 'output(recipe)'

For longer recipes, you might want to create a short script:

#!/usr/bin/liquidsoap -v

log.file.path := "/tmp/<script>.log"
log.stdout := true

recipe = # <fill this>
output(recipe)

See the quickstart guide for more information on how to run Liquidsoap, on what is this output(..) operator, etc.

See also the ffmpeg cookbook for examples specific to the ffmpeg support.

Files

A source which infinitely repeats the same URI:

single("/my/default.ogg")

A source which plays a playlist of requests – a playlist is a file with an URI per line.

Shuffle, play every URI, start over.
playlist("/my/playlist.txt")
Do not randomize
playlist(mode="normal", "/my/pl.m3u")
The playlist can come from any URI,
can be reloaded every 10 minutes.
playlist(reload=600,"http://my/playlist.txt")

When building your stream, you’ll often need to make it unfallible. Usually, you achieve that using a fallback switch (see below) with a branch made of a safe single. Roughly, a single is safe when it is given a valid local audio file.

Transcoding

Liquidsoap can achieve basic streaming tasks like transcoding with ease. You input any number of “source” streams using input.http, and then transcode them to any number of formats / bitrates / etc. The only limitation is your hardware: encoding and decoding are both heavy on CPU. If you want to get the best use of CPUs (multicore, memory footprint etc.) when encoding media with Liquidsoap, we recommend using the %ffmpeg encoders.

Input the stream,
from an Icecast server or any other source
url = "https://icecast.radiofrance.fr/fip-hifi.aac"
input = mksafe(input.http(url))

First transcoder: MP3 32 kbps
We also degrade the samplerate, and encode in mono
Accordingly, a mono conversion is performed on the input stream
output.icecast(
 %mp3(bitrate=32, samplerate=22050, stereo=false),
 mount="/your-stream-32.mp3",
 host="streaming.example.com", port=8000, password="xxx",
 mean(input))

Second transcoder : MP3 128 kbps using %ffmpeg
output.icecast(
 %ffmpeg(format="mp3", %audio(codec="libmp3lame", b="128k")),
 mount="/your-stream-128.mp3",
 host="streaming.example.com", port=8000, password="xxx",
 input)

Re-encoding a file

As a simple example using a fallible output, we shall consider
re-encoding a file.
We start by building a source that plays our file only once.
That source is obviously fallible.
We pass it to a file output, which has to be in fallible mode.
We also disable the sync parameter on the source’s clock,
to encode the file as quickly as possible.
Finally, we use the on_stop handler to shutdown
liquidsoap when streaming is finished.

The input file,
any format supported by liquidsoap
input = "/tmp/input.mp3"

The output file
output = "/tmp/output.ogg"

A source that plays the file once
source = once(single(input))

We use a clock with disabled synchronization
clock.assign_new(sync="none",[source])

Finally, we output the source to an
ogg/vorbis file
output.file(%vorbis, output,fallible=true,
 on_stop=shutdown,source)

RTMP server

With our FFmpeg support, it is possible to create a simple RTMP server with no re-encoding:

s = playlist("...")

enc = %ffmpeg(
 format="flv",
 listen=1,
 %audio.copy,
 %video.copy
)

output.url(url="rtmp://host/app/instance", enc, s)

Transmitting signal

It is possible to send raw PCM signal between two instances using the FFmpeg encoder. Here’s an example using
the SRT transport protocol:

Sender:

enc = %ffmpeg(
 format="s16le",
 %audio(
 codec="pcm_s16le",
 ac=2,
 ar=48000
)
)
output.srt(enc, s)

Receiver:

s = input.srt(
 content_type="application/ffmpeg;format=s16le,ch_layout=stereo,sample_rate=48000"
)

Scheduling

A fallback switch
fallback([playlist("http://my/playlist"),
 single("/my/jingle.ogg")])

A scheduler,
assuming you have defined the night and day sources
switch([({0h-7h}, night), ({7h-24h}, day)])

Generating playlists from a media library

In order to store all the metadata of the files in a given directory and use
those to generate playlists, you can use the medialib operator which takes as
argument the directory to index. On first run, it will index all the files of
the given folder, which can take some time (you are advised to use the
persistency parameter in order to specify a file where metadata will be
stored to avoid reindexing at each run). The resulting object can then
be queried with the find method in order to return all files matching the given
conditions and thus generate a playlist:

m = medialib(persistency="/tmp/medialib.json", "~/Music/")
l = m.find(artist_contains="Brassens")
l = list.shuffle(l)
output(playlist.list(l))

The parameter of the find method follow the following convention:

	artist="XXX" looks for files where the artist tag is exactly the given one

	artist_contains="XXX" looks for files where the artist tag contains the
given string as substring

	artist_matches="XXX" looks for files where the artist tag matches the given
regular expression (for instance artist_matches="(a)+.*(b)+" looks for files
where the artist contains an a followed by a b).

The tags for which such parameters are provided are: artist, title, album
and filename (feel free to ask if you need more).

Some numeric tags are also supported:

	year=1999 looks for files where the year is exactly the given one

	year_ge=1999 looks for files where the year at least the given one

	year_lt=1999 looks for files where the year at most the given one

The following numeric tags are supported: bpm, year.

If multiple arguments are passed, the function finds files with tags matching
the conjunction of the corresponding condition.

Finally, if you need more exotic search functions, the argument predicate can
be used. It takes as argument a predicate which is a function taking the
metadata of a file and returning whether the file should be selected. For
instance, the following looks for files where the name of the artist is of
length 5:

def p(m)
 string.length(m["artist"]) == 5
end
l = m.find(predicate=p)

Force a file/playlist to be played at least every XX minutes

It can be useful to have a special playlist that is played at least every 20 minutes for instance (3 times per hour).
You may think of a promotional playlist for instance.
Here is the recipe:

(1200 sec = 20 min)
timed_promotions = delay(1200.,promotions)
main_source = fallback([timed_promotions,other_source])

Where promotions is a source selecting the file to be promoted.

Play a jingle at a fixed time

Suppose that we have a playlist jingles of jingles and we want to play one
within the 5 first minutes of every hour, without interrupting the current
song. We can think of doing something like

radio = switch([({ 0m-5m }, jingles), ({ true }, playlist)])

but the problem is that it is likely to play many jingles. In order to play
exactly one jingle, we can use the function predicate.activates which detects
when a predicate (here { 0m-5m }) becomes true:

radio = switch([(predicate.activates({ 0m-5m }), jingles), ({ true }, playlist)])

Handle special events: mix or switch

Add a jingle to your normal source
at the beginning of every hour:
add([normal,switch([({0m0s},jingle)])])

Switch to a live show as soon as one is available. Make the show unavailable when it is silent, and skip tracks from the normal source if they contain too much silence.

stripped_stream =
 blank.strip(input.http("http://myicecast:8080/live.ogg"))

fallback(track_sensitive=false,
 [stripped_stream,blank.strip(normal)])

Without the track_sensitive=false the fallback would wait the end of a track to switch to the live. When using the blank detection operators, make sure to fine-tune their threshold and length (float) parameters.

Unix interface, dynamic requests

Liquidsoap can create a source that uses files provided by the result of the execution of any arbitrary function of your own.
This is explained in the documentation for request-based sources.

For instance, the following snippet defines a source which repeatedly plays the first valid URI in the playlist:

request.dynamic.list(
 { [request.create("bar:foo",
 indicators=
 process.read.lines("cat "^quote("playlist.pls")))] })

Of course a more interesting behaviour is obtained with a more interesting program than cat, see Beets for example.

Another way of using an external program is to define a new protocol which uses it to resolve URIs. protocol.add takes a protocol name, a function to be used for resolving URIs using that protocol. The function will be given the URI parameter part and the time left for resolving – though nothing really bad happens if you don’t respect it. It usually passes the parameter to an external program ; it is another way to integrate Beets, for example:

protocol.add("beets", fun(~rlog,~maxtime,arg) ->
 process.read.lines(
 "/home/me/path/to/beet random -f '$path' #{arg}"
)
)

When resolving the URI beets:David Bowie, liquidsoap will call the function, which will call beet random -f '$path' David Bowie which will output the path to a David Bowie song.

Dynamic input with harbor

The operator input.harbor allows you to receive a source stream directly inside a running liquidsoap.

It starts a listening server on where any Icecast2-compatible source client can connect. When a source is connected, its input if fed to the corresponding source in the script, which becomes available.

This can be very useful to relay a live stream without polling the Icecast server for it.

An example can be:

Serveur settings
settings.harbor.bind_addrs := ["0.0.0.0"]

An emergency file
emergency = single("/path/to/emergency/single.ogg")

A playlist
playlist = playlist("/path/to/playlist")

A live source
live = input.harbor("live",port=8080,password="hackme")

fallback
radio = fallback(track_sensitive=false,
 [live,playlist,emergency])

output it
output.icecast(
 %vorbis,
 mount="test",
 host="host",
 radio)

This script, when launched, will start a local server, here bound to “0.0.0.0”. This means that it will listen on any IP address available on the machine for a connection coming from any IP address. The server will wait for any source stream on mount point “/live” to login.
Then if you start a source client and tell it to stream to your server, on port 8080, with password “hackme”, the live source will become available and the radio will stream it immediately.

Play a short silence when transitioning out of input.harbor

If the live connection is unstable, for instance when streaming through a roaming phone device, it can be interesting
to add an extra 5s of silence when transitioning out of a live input.harbor to give the input some chance to reconnect.

This can be done with the append operator:

The live source. We use a short buffer to switch
more quickly to the source when reconnecting
live_source = input.harbor("mount-point-name", buffer=3.)

A playlist source.
playlist_source = playlist("/path/to/playlist")

Set to `true` when we should be adding
silence
should_append = ref(false)

Append 5. of silence when needed.
fallback_source = append(
 playlist_source, fun (_) ->
 if should_append() then
 should_append := false
 blank(duration=5.)
 else
 source.fail()
 end
)

Transition to live
def to_live(playlist, live) =
 sequence([playlist,live])
end

Transition back to playlist
def to_playlist(live, playlist) =
 # Ask to insert a silent track.
 should_append := true

 # Cancel current track. This will also set the playlist
 # to play a new track. If needed, `cancel_pending` can
 # be used to for a new silent track without skipping the
 # playlist current track.
 fallback_source.skip()

 sequence([live, playlist])
end

radio = fallback(
 track_sensitive=false,
 transitions=[to_live, to_playlist],
 [live_source, fallback_source]
)

Dump a stream into segmented files

It is sometimes useful (or even legally necessary) to keep a backup of an audio
stream. Storing all the stream in one file can be very impractical. In order to
save a file per hour in wav format, the following script can be used:

A source to dump
s = ...

Dump the stream
output.file(%wav, '/archive/%Y-%m-%d/%Y-%m-%d-%H_%M_%S.mp3', s, reopen_when={0m})

In the following variant we write a new mp3 file each time new metadata is
coming from s:

file_name = '/archive/$(if $(title),"$(title)","Unknown archive")-%Y-%m-%d/%Y-%m-%d-%H_%M_%S.mp3'
output.file(%mp3, filename, s, reopen_on_metadata=true)

In the two examples we use string interpolation and time
literals to generate the output file name.

In order to limit the disk space used by this archive, on unix systems we can
regularly call find to cleanup the folder ; if we can to keep 31 days of
recording :

thread.when(every=3600., pred={ true },
 fun () -> list.iter(fun(msg) -> log(msg, label="archive_cleaner"),
 list.append(
 process.read.lines("find /archive/* -type f -mtime +31 -delete"),
 process.read.lines("find /archive/* -type d -empty -delete")
)
)
)

Transitions

There are two kinds of transitions. Transitions between two different children of a switch or fallback and transitions between tracks of the same source.

Switch-based transitions

The switch-based operators (switch, fallback and random) support transitions. For every child, you can specify a transition function computing the output stream when moving from one child to another. This function is given two source parameters: the child which is about to be left, and the new selected child. The default transition is fun (a,b) -> b, it simply relays the new selected child source.

One limitation of these transitions, however, is that if the transition happen right at the end of a track, which is the default with track_sensitive=true, then there is no more data available for the old source, which makes it impossible to fade it out. If that is what you are expecting, you should look at crossfade-based transitions

Crossfade-based transitions

Crossfade-based transitions are more complex and involve buffering source data in advance to be able to compute a transition where ending and starting track potentially overlap. This does not work with all type of sources since some of them, such as input.http may only receive data at real-time rate and cannot be accelerated to buffer their data or else we risk running out of data.

We provide a default operator named smart_cross which may be suitable for most usage. But you can also create your own customized crossfade transitions. This is in particular true if you are expecting crossfade transitions between tracks of your music source but not between a music track and e.g. some jingles. Here’s how to do it in this case:

A function to add a source_tag metadata to a source:
def source_tag(s,tag) =
 def f(_)
 [("source_tag",(tag:string))]
 end
 metadata.map(id=tag,insert_missing=true,f,s)
end

Tag our sources
music = source_tag(..., "music")
jingles = source_tag(..., "jingles")

Combine them with one jingle every 3 music tracks
radio = rotate(weights = [1,3],[jingles,music])

Now a custom crossfade transition:
def transition(a,b)
 # If old or new source is not music, no fade
 if a.metadata["source_tag"] != "music" or a.metadata["source_tag"] != "music" then
 sequence([a.source, b.source])
 else
 # Else, apply the standard smart transition
 cross.smart(a, b)
 end
end

Apply it!
radio = cross(duration=5., transition, radio)

Alsa unbuffered output

You can use Liquidsoap to capture and play through alsa with a minimal delay. This particularly useful when you want to run a live show from your computer. You can then directly capture and play audio through external speakers without delay for the DJ !

This configuration is not trivial since it relies on your hardware. Some hardware will allow both recording and playing at the same time, some only one at once, and some none at all.. Those note to configure are what works for us, we don’t know if they’ll fit all hardware.

First launch liquidsoap as a one line program

liquidsoap -v --debug 'input.alsa(bufferize=false)'

Unless you’re lucky, the logs are full of lines like the following:

Could not set buffer size to 'frame.size' (1920 samples), got 2048.

The solution is then to set liquidsoap’s internal frame size to this value, which is most likely specific to your hardware. Let’s try this script:

Set correct frame size:
This makes it possible to set any audio frame size.
Make sure that you do NOT use video in this case!
video.frame.rate := 0

Now set the audio frame size exactly as required:
settings.frame.audio.size := 2048

input = input.alsa(bufferize=false)
output.alsa(bufferize=false,input)

The setting will be acknowledged in the log as follows:

Targeting 'frame.audio.size': 2048 audio samples = 2048 ticks.

If everything goes right, you may hear on your output the captured sound without any delay! If you want to test the difference, just run the same script with bufferize=true.

If you experience problems it might be a good idea to double the value of the frame size. This increases stability, but also latency.

Smart crossfade

Basic operator

Liquidsoap includes an advanced crossfading operator. Using it, you can code which transition you want for your songs, according to the average volume level (in dB) computed on the end of the ending track and the beginning of the new one.

The low level operator is cross. With it, you can register a function that returns the transition you like. The arguments passed to this function are:

	volume level for previous track

	volume level for next track

	metadata chunk for previous track

	metadata chunk for next track

	source corresponding to previous track

	source corresponding to next track

You can find its documentation in the language reference.

Example

Liquidsoap also includes a ready-to-use operator defined using cross, it is called crossfade and is defined in the pervasive helper script utils.liq. Its code is:

Smart transition for crossfade
@category Source / Track Processing
@param ~log Default logger
@param ~fade_in Fade-in duration, if any.
@param ~fade_out Fade-out duration, if any.
@param ~high Value, in dB, for loud sound level.
@param ~medium Value, in dB, for medium sound level.
@param ~margin Margin to detect sources that have too different sound level for crossing.
@param ~default Smart crossfade: transition used when no rule applies (default: sequence).
@param a Ending track
@param b Starting track
def cross.smart(~log=log(label="cross.smart"),
 ~fade_in=3.,~fade_out=3.,
 ~default=(fun (a,b) -> (sequence([a, b]):source)),
 ~high=-15., ~medium=-32., ~margin=4.,
 a, b)
 let fade.out = fade.out(type="sin",duration=fade_out)
 let fade.in = fade.in(type="sin",duration=fade_in)
 add = fun (a,b) -> add(normalize=false,[b, a])

 # This is for the type system..
 ignore(a.metadata["foo"])
 ignore(b.metadata["foo"])

 if
 # If A and B are not too loud and close, fully cross-fade them.
 a.db_level <= medium and b.db_level <= medium and abs(a.db_level - b.db_level) <= margin
 then
 log("Old <= medium, new <= medium and |old-new| <= margin.")
 log("Old and new source are not too loud and close.")
 log("Transition: crossed, fade-in, fade-out.")
 add(fade.out(a.source),fade.in(b.source))

 elsif
 # If B is significantly louder than A, only fade-out A.
 # We don't want to fade almost silent things, ask for >medium.
 b.db_level >= a.db_level + margin and a.db_level >= medium and b.db_level <= high
 then
 log("new >= old + margin, old >= medium and new <= high.")
 log("New source is significantly louder than old one.")
 log("Transition: crossed, fade-out.")
 add(fade.out(a.source),b.source)

 elsif
 # Opposite as the previous one.
 a.db_level >= b.db_level + margin and b.db_level >= medium and a.db_level <= high
 then
 log("old >= new + margin, new >= medium and old <= high")
 log("Old source is significantly louder than new one.")
 log("Transition: crossed, fade-in.")
 add(a.source,fade.in(b.source))

 elsif
 # Do not fade if it's already very low.
 b.db_level >= a.db_level + margin and a.db_level <= medium and b.db_level <= high
 then
 log("new >= old + margin, old <= medium and new <= high.")
 log("Do not fade if it's already very low.")
 log("Transition: crossed, no fade.")
 add(a.source,b.source)

 # What to do with a loud end and a quiet beginning ?
 # A good idea is to use a jingle to separate the two tracks,
 # but that's another story.

 else
 # Otherwise, A and B are just too loud to overlap nicely, or the
 # difference between them is too large and overlapping would completely
 # mask one of them.
 log("No transition: using default.")
 default(a.source, b.source)
 end
end

You can use it directly in your script, or use this code to define yours!

Basics

Starting with version 1.0.1, it is possible to build a liquidsoap binary that can load
all its dependencies from any arbitrary path. This is very useful to distribute a liquidsoap
bundled binary, independent of the distribution used.

You can enable custom path at configure time, by passing the --enable-custom-path configuration option.
A custom loading path is a directory that contains the following file/directories:

	./camomile: Camomile shared data. They are usually located in /usr/(local/)share/camomile

	./libs: pervasive scripts. Their are located in liquidsoap/scripts in liquidsoap’s sources

	./log: default log directories

	./magic: directory for magic files. See below for more details.

	./plugins: default plugins directory (most likely empty)

	./run: default runtime files directory

Adding liquidsoap binary

In order to ship a liquidsoap binary which is independent of the distribution it will
be run on, one need to also include its dynamic libraries, except for the most common.
The following command may be used to list them:

ldd ./liquidsoap | grep usr | cut -d' ' -f 3

Those libraries are usually copied into a ./ld directory. Then, the LD_LIBRARY_PATH
is used to point the dynamic loader to this directory.

Finally, the liquidsoap library is usually added in ./bin/liquidsoap

Configuration variables

In the following, configuration variables may refer to either absolute or relative paths. If referring to
a relative path, the path is resolved relatively to the directory where the liquidsoap binary
is located at.

In order to tell liquidsoap where its custom path is located, you need to set the
LIQUIDSOAP_BASE_DIR.

Another important variable is MAGIC. It tells liquidsoap where to load the libmagic’s
definitions and defaults to ../magic/magic.mgc. Older versions of libmagic may
require to use magic/magic.mime instead.

Full example

For a fully-functional example, you can check our heroku buildpack [https://github.com/savonet/heroku-buildpack-liquidsoap].
Its layout is:

./bin
./bin/liquidsoap
./camomile
./camomile/charmaps
(...)
./ld
./ld/libao.so.2
(...)
./libs
./libs/externals.liq
(...)
./log
./magic
./magic/magic.mime
./plugins
./run

Its configuration variables are set to:

LD_LIBRARY_PATH=/path/to/ld
LIQUIDSOAP_BASE_DIR=..
MAGIC=../magic/magic.mime

As you can see, we use an old version of libmagic so we need to load magic.mime instead of magic.mgc.

Documentation index

How to use: Start with the quickstart and make sure you
learn how to find help. Then it’s as you like: go for another
general tutorial, or a specific example, pick a basic
notion, or some examples from the cookbook. If you’ve
understood all you need, just browse the reference and compose
your dream stream.

If you downloaded a source tarball of liquidsoap, you may first read the
build instructions.

If you are migrating from a previous version, you might want to checkout
this page.

General tutorials

	The book: The Liquidsoap book

	Video presentations: some presentations we did about liquidsoap

	How to find help about operators, settings, server commands, etc.

	Frequently Asked Questions, Troubleshooting

	Quickstart: where anyone should start.

	Complete case analysis: an example that is not a toy.

	Cookbook: contains lots of idiomatic examples.

Reference

	Script language: A more detailed presentation.

	Core API: The core liquidsoap API

	Extra API: Extra functions and libraries.

	Protocols: List of protocols supported by liquidsoap.

	Settings: The list of available settings for liquidsoap.

	FFmpeg: FFmpeg support documentation.

	Encoding formats: The available formats for encoding outputs.

	Videos streams: Use liquidsoap for video streams

	JSON import/export: Importing and exporting language values in JSON.

	Playlist parsers: Supported playlist formats.

	LADSPA plugins: Using LADSPA plugins.

Core

	Basic concepts: sources, clocks and requests.

	Stream contents: what kind of streams are supported, and how.

	Script loading: load several scripts, learn about the script library.

	Execution phases

Specific tutorials

	Blank detection

	Customize metadata

	Dynamic source creation: dynamically create sources using server requests.

	External decoders: use an external program for decoding audio files.

	External encoders: use an external audio encoding program.

	External streams: use an external program for streaming audio data.

	HLS output: output your stream as HTTP Live Stream.

	HTTP input: relay external streams.

	Harbor input: receive streams from icecast and shoutcast source clients.

	ICY metadata update: manipulate and configure metadata update in Icecast.

	Interaction with the Harbor: interact with a running Liquidsoap using the Harbor server.

	Interaction with the server interact with a running Liquidsoap instance using the telnet server.

	Normalization and replay gain: normalize audio data.

	Profiling: profiling your scripts.

	Prometheus reporting: metrics reporting via prometheus.

	Requests-based sources: create advanced sources using requests.

	Seek and cue support: seek and set cue-in and cue-out points in sources.

	Shoutcast output: output to shoutcast.

	Smart crossfading: define custom crossfade transitions.

	Using in production: integrate liquidsoap scripts in a production environment.

User scripts

	Beets: an example of a music database integration.

	Geekradio

	RadioPi

	Frequence3

	Video with a single static image

	Split a CUE sheet

Code snippets

	Code example index

Behind the curtains

	Some presentations and publications explaining the theory underlying Liquidsoap

	OCaml libraries used in Liquidsoap, that can be reused in other projects

	Documentation of some internals of Liquidsoap

	Documentation for previous versions

 Liquidsoap supports dynamic creation and destruction of sources
during the execution of a script. The following gives an example
of this.

First some outlines:

	This example is meant to create a new source and outputs. It is not easy currently to change a source being streamed

	The idea is to create a new output using a telnet/server command.

	In order for a Liquidsoap script to run without an active source at startup, it is necessary to include settings.init.force_start := true at the start of the script.

In this example, we will register a command that dynamically create a new output based on an encoded stream
and output it to an arbitrary url, as supported by the ffmpeg copy encoder. This script can be used to create
a dynamic restreaming platform.

Here’s the code:

settings.init.force_start := true
settings.server.telnet := true

Replace the path here with a path to some video files:
s = playlist("/path/to/files")

streams = ref([])
count = ref(0)

enc = %ffmpeg(
 format="flv",
 %audio.copy,
 %video.copy
)

def create_stream(url) =
 if list.assoc.mem(url, !streams) then
 "Stream for url #{url} already exists!"
 else
 out = output.url(id="restream-#{!count}", fallible=true, url=url, enc, s)
 count := !count + 1
 streams := [...!streams, (url, out.shutdown)]
 "OK!"
 end
end

def delete_stream(url) =
 if not list.assoc.mem(url, !streams) then
 "Stream for url #{url} does not exists!"
 else
 shutdown = list.assoc(url, !streams)
 shutdown()
 streams := list.filter((fun (el) -> fst(el) != url), !streams)
 "OK!"
 end
end

server.register(namespace="restream",
 description="Redirect a stream.",
 usage="start <url>",
 "start",
 create_stream)
server.register(namespace="restream",
 description="Stop a dynamic playlist.",
 usage="stop <url>",
 "stop",
 delete_stream)

After executing this script, you should see two telnet commands:

	restream.start <uri>

	restream.stop <uri>

which you can use to create/destroy dynamically your sources.

Encoding formats

Encoders are used to define formats into which raw sources should be encoded by
an output. Syntax for encoder is: %encoder(parameters...) or, if you use
default parameters, %encoder.

Please note that not all encoding formats are available at all time. Most of
them require optional dependencies. If a format is not available, you should see
an error like this:

Error 12: Unsupported encoder: %sine().
You must be missing an optional dependency.

In particular, due to limitations with static linking on windows, only the
%ffmpeg encoder is available with our windows build. However, this encoder provides
a lot of codecs and formats, and it is quite likely that it can provide what you need.

Formats determine the stream content

In most liquidsoap scripts, the encoding format determines what
kind of data is streamed.

The type of an encoding format depends on its parameter.
For example, %mp3 has type format(audio=2,video=0,midi=0)
but %mp3(mono) has type format(audio=1,video=0,midi=0).

The type of an output like output.icecast
or output.file is something like
(...,format('a),...,source('a))->source('a).
This means that your source will have to have the same type as your format.

For example if you write

output.file(%mp3,"/tmp/foo.mp3",playlist("~/audio"))

then the playlist source will have to stream stereo audio.
Thus it will reject mono and video files.

Liquidsoap provides operators that can be used to convert sources
into a format acceptable for a given encoder. For instance, the mean
operator transforms any audio source into a mono source and the audio_to_stereo
operator transforms any audio source into a stereo source.

List of formats and their syntax

All parameters are optional, and the parenthesis are not needed
when no parameter is passed. In the following default values
are shown.
As a special case, the keywords mono and stereo can be used to indicate
the number of channels (whether is is passed as an integer or a boolean).

MP3

Mp3 encoder comes in 3 flavors:

	%mp3 or %mp3.cbr: Constant bitrate encoding

	%mp3.vbr: Variable bitrate, quality-based encoding.

	%mp3.abr: Average bitrate based encoding.

Parameters common to each flavor are:

	stereo=true/false, mono=true/false: Encode stereo or mono data (default: stereo).

	stereo_mode: One of: "stereo", "joint_stereo" or "default" (default: "default"). Default means that the underlying library (libmp3lame) will pick the stereo mode based on compression ration and input channels.

	samplerate=44100: Encoded data samplerate (default: 44100)

	internal_quality=2: Lame algorithms internal quality. A value between 0 and 9, 0 being highest quality and 9 the worst (default: 2).

	id3v2=true: Add an id3v2 tag to encoded data (default: false). This option is only valid if liquidsoap has been compiled with taglib support.

Parameters for %mp3 are:

	bitrate: Encoded data fixed bitrate

Parameters for %mp3.vbr are:

	quality: Quality of encoded data; ranges from 0 (highest quality) to 9 (worst quality).

Parameters for %mp3.abr are:

	bitrate: Average bitrate

	min_bitrate: Minimum bitrate

	max_bitrate: Maximum bitrate

	hard_min: Enforce minimal bitrate

Examples:

	Constant 128 kbps bitrate encoding: %mp3(bitrate=128)

	Variable bitrate with quality 6 and samplerate of 22050 Hz: %mp3.vbr(quality=7,samplerate=22050)

	Average bitrate with mean of 128 kbps, maximum bitrate 192 kbps and id3v2 tags: %mp3.abr(bitrate=128,max_bitrate=192,id3v2=true)

Optionally, liquidsoap can insert a message within mp3 data. You can set its value using the msg parameter.
Setting it to "" disables this feature. This is its default value.

Shine

Shine is the fixed-point mp3 encoder. It is useful on architectures without a FPU, such as ARM.
It is named %shine or %mp3.fxp and its parameters are:

%shine(channels=2,samplerate=44100,bitrate=128)

WAV

%wav(stereo=true, channels=2, samplesize=16, header=true, duration=10.)

If header is false, the encoder outputs raw PCM. duration is optional
and is used to set the WAV length header.

Because Liquidsoap encodes a possibly infinite stream, there
is no way to know in advance the duration of encoded data. Since WAV header
has to be written first, by default its length is set to the maximum possible
value. If you know the expected duration of the encoded data and you actually
care about the WAV length header then you should use this parameter.

FFmpeg

See detailed ffmpeg encoders article.

Ogg

The following formats can be put together in an Ogg container.
The syntax for doing so is %ogg(x,y,z) but it is also
possible to just write %vorbis(...), for example, instead
of %ogg(%vorbis(...)).

All ogg encoders have a bytes_per_page parameter, which can be used to
try to limit ogg logical pages size. For instance:

Try to limit vorbis pages size to 1024 bytes
%vorbis(bytes_per_page=1024)

Vorbis

Variable bitrate
%vorbis(samplerate=44100, channels=2, quality=0.3)
% Average bitrate
%vorbis.abr(samplerate=44100, channels=2, bitrate=128, max_bitrate=192, min_bitrate=64)
Constant bitrate
%vorbis.cbr(samplerate=44100, channels=2, bitrate=128)

Quality ranges from -0.2 to 1,
but quality -0.2 is only available with the aotuv implementation of libvorbis.

Opus

Opus is a lossy audio compression made especially suitable for interactive real-time applications
over the Internet. Liquidsoap supports Opus data encapsulated into Ogg streams.

The encoder is named %opus and its parameters are as follows. Please refer
to the Opus documentation [http://www.opus-codec.org/docs/] for information about
their meanings and values.

	vbr: one of "none", "constrained" or "unconstrained"

	application: One of "audio", "voip" or "restricted_lowdelay"

	complexity: Integer value between 0 and 10.

	max_bandwidth: One of "narrow_band", "medium_band", "wide_band", "super_wide_band" or "full_band"

	samplerate: input samplerate. Must be one of: 8000, 12000, 16000, 24000 or 48000

	frame_size: encoding frame size, in milliseconds. Must be one of: 2.5, 5., 10., 20., 40. or 60..

	bitrate: encoding bitrate, in kbps. Must be a value between 5 and 512. You can also set it to "auto".

	channels: currently, only 1 or 2 channels are allowed.

	mono, stereo: equivalent to channels=1 and channels=2.

	signal: one of "voice" or "music"

Theora

%theora(quality=40,width=640,height=480,
 picture_width=255,picture_height=255,
 picture_x=0, picture_y=0,
 aspect_numerator=1, aspect_denominator=1,
 keyframe_frequency=64, vp3_compatible=false,
 soft_target=false, buffer_delay=5,
 speed=0)

You can also pass bitrate=x explicitly instead of a quality.
The default dimensions are liquidsoap’s default,
from the settings frame.video.height/width.

Speex

%speex(stereo=false, samplerate=44100, quality=7,
 mode=wideband, # One of: wideband|narrowband|ultra-wideband
 frames_per_packet=1,
 complexity=5)

You can also control quality using abr=x or vbr=y.

Flac

The flac encoding format comes in two flavors:

	%flac is the native flac format, useful for file output but not for streaming purpose

	%ogg(%flac,...) is the ogg/flac format, which can be used to broadcast data with icecast

The parameters are:

%flac(samplerate=44100,
 channels=2,
 compression=5,
 bits_per_sample=16)

compression ranges from 0 to 8 and bits_per_sample should be one of: 8, 16, 24 or 32.
Please note that 32 bits per sample is currently not supported by the underlying libflac.

FDK-AAC

This encoder can do both AAC and AAC+.

Its syntax is:

%fdkaac(channels=2, samplerate=44100, bandwidth="auto", bitrate=64, afterburner=false, aot="mpeg2_he_aac_v2", transmux="adts", sbr_mode=false)

Where aot is one of: "mpeg4_aac_lc", "mpeg4_he_aac", "mpeg4_he_aac_v2",
"mpeg4_aac_ld", "mpeg4_aac_eld", "mpeg2_aac_lc", "mpeg2_he_aac" or
"mpeg2_he_aac_v2"

bandwidth is one of: "auto", any supported integer value.

transmux is one of: "raw", "adif", "adts", "latm", "latm_out_of_band" or "loas".

Bitrate can be either constant by passing: bitrate=64 or variable: vbr=<1-5>

You can consult the Hydrogenaudio knowledge base [http://wiki.hydrogenaud.io/index.php?title=Fraunhofer_FDK_AAC] for more details
on configuration values and meanings.

Gstreamer

The %gstreamer encoder can be used to encode streams using the gstreamer multimedia framework.
This encoder extends liquidsoap with all available GStreamer formats which includes most, if not all,
formats available to your operating system.

The encoder’s parameters are as follows:

%gstreamer(channels=2,
 audio="lamemp3enc",
 has_video=true,
 video="x264enc",
 muxer="mpegtsmux",
 metadata="metadata",
 log=5,
 pipeline="")

Please refer to the Gstreamer encoder page for a detailed explanation
of this encoder.

External encoders

For a detailed presentation of external encoders, see this page.

%external(channels=2,samplerate=44100,header=true,
 restart_on_crash=false,
 restart_on_metadata,
 restart_after_delay=30,
 process="progname")

Only one of restart_on_metadata and restart_after_delay should
be passed. The delay is specified in seconds.
The encoding process is mandatory, and can also be passed directly
as a string, without process=.

Introduction

You can use external programs in liquidsoap to decode audio files. The program must be able to
output WAV data to its standard output (stdout) and, posssibly, read encoded data from its
standard input.

Please note that this feature is not available under Windows.

Basic operators

External decoders are registered using the decoder.add and decoder.oblivious.add operators.
They are invoked the following way:

decoder.add

decoder.add(name="my_decoder",description="My custom decoder",
 test,decoder)

decoder.add is used for external decoders that can read the encoded data from their standard
input (stdin) and write the decoded data as WAV to their standard output (stdout). This operator
is recommended because its estimation of the remaining time is better than the estimation done
by the decoders registered using decoder.oblivious.add. The important parameters are:

	test is a function used to determine if the file should be decoded by the decoder. Returned values are:

	0: no decodable audio,

	-1: decodable audio but number of audio channels unknown,

	x: fixed number of decodable audio channels.

	decoder is the string containing the shell command to run to execute the decoding process.

decoder.oblivious.add

decoder.oblivious.add is very similar to decoder.add. The main difference is that the
decoding program reads encoded data directly from the local files and not its standard input.
Decoders registered using this operator do not have a reliable estimation of the remaining
time. You should use decoder.oblivious.add only if your decoding program is not able
to read the encoded data from its standard input.

decoder.oblivious.add(name="my_decoder",description="My custom decoder",
 buffer=5., test,decoder)

decoder.add is used for external decoders that can read the encoded data from their standard
input (stdin) and write the decoded data as WAV to their standard output (stdout). This operator
is recommended because its estimation of the remaining time is better than the estimation done
by the decoders registered using decoder.oblivious.add. The important parameters are:

	test is a function used to determine if the file should be decoded by the decoder. Returned values are:

	0: no decodable audio,

	-1: decodable audio but number of audio channels unknown,

	x: fixed number of decodable audio channels.

	decoder is a function that receives the name of the file that should be decoded and returns a string containing the shell command to run to execute the decoding process.

decoder.metadata.add

You may also register new metadata resolvers using the decoder.metadata.add operator. It is invoked the
following way: decoder.metadata.add(format,resolver), where:

	format is the name of the resolved format. It is only informative.

	resolver is a function f that returns a list of metadata of the form: (label, value). It is invoked the following way: f(format=name,file), where:

	format contains the name of the format, as returned by the decoder that accepted to decode the file. f may return immediately if this is not an expected value.

	file is the name of the file to decode.

Wrappers

On top of the basic operators, wrappers have been written for some common decoders. This includes the flac and
faad decoders, by default. All the operators are defined in externals.liq.

The FLAC decoder

The flac decoder uses the flac command line. It is enabled if the binary can be found in the current $PATH.

Its code is the following:

 def test_flac(file) =
 if process.test("which metaflac") then
 channels = list.hd(default="",process.read.lines("metaflac \
 --show-channels #{quote(file)} \
 2>/dev/null"))
 # If the value is not an int, this returns 0 and we are ok :)
 int_of_string(channels)
 else
 # Try to detect using mime test..
 mime = get_mime(file)
 if string.match(pattern="flac",file) then
 # We do not know the number of audio channels
 # so setting to -1
 (-1)
 else
 # All tests failed: no audio decodable using flac..
 0
 end
 end
 end
 decoder.add(name="FLAC",description="Decode files using the flac \
 decoder binary.", test=test_flac,flac_p)

Additionally, a metadata resolver is registered when the metaflac command can be found in the $PATH:

if process.test("which metaflac") then
 log(level=3,"Found metaflac binary: \
 enabling flac external metadata resolver.")
 def flac_meta(file)
 ret = process.read.lines("metaflac --export-tags-to=- \
 #{quote(file)} 2>/dev/null")
 ret = list.map(string.split(separator="="),ret)
 # Could be made better..
 def f(l',l)=
 if list.length(l) >= 2 then
 list.append([(list.hd(default="",l),list.nth(default="",l,1))],l')
 else
 if list.length(l) >= 1 then
 list.append([(list.hd(default="",l),"")],l')
 else
 l'
 end
 end
 end
 list.fold(f,[],ret)
 end
 decoder.metadata.add("FLAC",flac_meta)
end

The faad decoder

The faad decoder uses the faad program, if found in the $PATH.
It can decode AAC and AAC+ audio files. This program does not support
reading encoded data from its standard input so the decoder is
registered using decoder.oblivious.add.

Its code is the following:

 aac_mimes = ["audio/aac", "audio/aacp", "audio/3gpp", "audio/3gpp2", "audio/mp4",
 "audio/MP4A-LATM", "audio/mpeg4-generic", "audio/x-hx-aac-adts"]
 aac_filexts = ["m4a", "m4b", "m4p", "m4v",
 "m4r", "3gp", "mp4", "aac"]

 # Faad is not very selective so
 # We are checking only file that
 # end with a known extension or mime type
 def faad_test(file) =
 # Get the file's mime
 mime = get_mime(file)
 # Test mime
 if list.mem(mime,aac_mimes) then
 true
 else
 # Otherwise test file extension
 ret = string.extract(pattern='\.(.+)$',file)
 if list.length(ret) != 0 then
 ext = ret["1"]
 list.mem(ext,aac_filexts)
 else
 false
 end
 end
 end

 if process.test("which faad") then
 log(level=3,"Found faad binary: enabling external faad decoder and \
 metadata resolver.")
 faad_p = (fun (f) -> "faad -w #{quote(f)} 2>/dev/null")
 def test_faad(file) =
 if faad_test(file) then
 channels = list.hd(default="",process.read.lines("faad -i #{quote(file)} 2>&1 | \
 grep 'ch,'"))
 ret = string.extract(pattern=", (\d) ch,",channels)
 ret =
 if list.length(ret) == 0 then
 # If we pass the faad_test, chances are
 # high that the file will contain aac audio data..
 "-1"
 else
 ret["1"]
 end
 int_of_string(default=(-1),ret)
 else
 0
 end
 end
 decoder.oblivious.add(name="FAAD",description="Decode files using \
 the faad binary.", test=test_faad, faad_p)
 def faad_meta(file) =
 if faad_test(file) then
 ret = process.read.lines("faad -i \
 #{quote(file)} 2>&1")
 # Yea, this is tuff programming (again) !
 def get_meta(l,s)=
 ret = string.extract(pattern="^(\w+):\s(.+)$",s)
 if list.length(ret) > 0 then
 list.append([(ret["1"],ret["2"])],l)
 else
 l
 end
 end
 list.fold(get_meta,[],ret)
 else
 []
 end
 end
 decoder.metadata.add("FAAD",faad_meta)
 end

Introduction

You can use any external program that accepts wav or raw PCM data to encode audio data and use the resulting compressed
stream as an output, either to a file, a pipe, or even icecast.

When using an external encoding process, uncompressed PCM data will be sent to the process through its standard input (stdin), and encoded data will be read through its standard output (stdout). When using a process that does only file input or output, /dev/stdin and /dev/stdout can be used, though this may generate issues if the encoding process expects to be able to go backward/forward in the file.

External encoders

The main operators that can be used with external encoders are:

	output.file

	output.icecast

In order to use external encoders with these operators, you have to use the
%external encoding format.
Its syntax is:

%external(channels=2,samplerate=44100,header=true,
 restart_on_crash=false,
 restart_on_metadata,
 restart_after_delay=30,
 process="progname")

The available options are:

	process: this parameter is a function that takes the current metadata and return the process to start.

	header: if set to false then no WAV header will be added to the data fed to the encoding process, thus the encoding process shall operate on RAW data.

	restart_on_crash: whether to restart the encoding process if it crashed. Useful when the external process fails to encode properly data after some time.

	restart_on_metadata: restart encoding process on each new metadata. Useful in conjunction with the process parameter for audio formats that need a new header, possibly with metadatas, for each new track. This is the case for the ogg container.

	restart_encoder_delay: Restart the encoder after some delay. This can be useful for encoders that cannot operate on infinite streams, or are buggy after some time, like the lame binary. The default for lame and accplusenc-based encoders is to restart the encoder every hour.

Only one of restart_encoder_delay or restart_on_new_track should be used.

The restart mechanism strongly relies on the good behaviour of the encoding process. The restart operation will
close the standard input of the encoding process. The encoding process is then expected to finish its own operations and
close its standard output. If it does not close its standard output, the encoding task will not finish.

If your encoding process has this issue, you should turn the restart_on_crash option to true and kill the encoding
process yourself.

If you use an external encoder with the output.icecast operator,
you should also use the following options of output.icecast:

	icy_metadata: send new metadata as ICY update. This is the case for headerless formats, such as MP3 or AAC, and it appears to work also for ogg/vorbis streams.

	format: Content-type (mime) of the data sent to icecast. For instance, for ogg data, it is one of "application/ogg", "audio/ogg" or "video/ogg" and for mp3 data it is "audio/mpeg".

Video support

Videos can also be encoded by programs able to read files in avi format from
standard input. To use it, the flag video=true of %external should be
used. For instance, a compressed avi file can be generated with ffmpeg using

output.file(
 %external(process="ffmpeg -i pipe:0 -f avi pipe:1",video=true),
 "/tmp/test.avi", s)

Introduction

You can use an external program to create a source that will read data coming out
of the standard output (stdout) of this program. Contrary to the external file decoders,
data will be buffered and played when a sufficient amount was accumulated.

The program should output data in signed 16 bits little endian PCM (s16le). Number of
channels and samplerate can be specified. There is no need of any wav header in the data,
though it should work too.

Basic operator

The basic operator for creating an external stream is input.external. Its parameters are:

	buffer: Duration of the pre-buffered data.

	max: Maximum duration of the buffered data.

	channels: Number of channels.

	samplerate: Sample rate.

	restart: Restart the process when it has exited normally.

	restart_on_error: Restart the process when it has exited with error.

The last parameter is unlabeled. It is a string containing the command that will be executed to
run the external program.

Wrappers

A wrapper, input.mplayer, is defined to use mplayer as the external decoder.
Its code is:

Stream data from mplayer
@category Source / Input
@param s data URI.
@param ~restart restart on exit.
@param ~restart_on_error restart on exit with error.
@param ~buffer Duration of the pre-buffered data.
@param ~max Maximum duration of the buffered data.
def input.mplayer(~id="input.mplayer",
 ~restart=true,~restart_on_error=false,
 ~buffer=0.2,~max=10.,s) =
 input.external(id=id,restart=restart,
 restart_on_error=restart_on_error,
 buffer=buffer,max=max,
 "mplayer -really-quiet \
 -ao pcm:file=/dev/stdout \
 -vc null -vo null #{quote(s)} \
 2>/dev/null")
end

Frequently Asked Questions

What does this message means?

Type error

Liquidsoap might also reject a script with a series of errors of the form this value has type ... but it should be a subtype of ...
. Usually the last error tells you what the problem is, but the previous errors might provide a better information as to where the error comes from.

For example, the error might indicate that a value of type int has been passed where a float was expected, in which case you should use a conversion, or more likely change an integer value such as 13 into a float 13..

A type error can also show that you’re trying to use a source of a certain content type (e.g., audio) in a place where another content type (e.g., pure video) is required. In that case the last error in the list is not the most useful one, but you will read something like this above:

At ...:
Error 5: this value has type
 source(video=canvas(_),...)
but it should be a subtype of
 source(audio=pcm(_),...)

Sometimes, the type error actually indicates a mistake in the order or labels of arguments. For example, given output.icecast(mount="foo.ogg",source) liquidsoap will complain that the second argument is a source (source(?A)) but should be a format (format(?A)): indeed, the first unlabelled argument is expected to be the encoding format, e.g., %vorbis, and the source comes only second.

Finally, a type error can indicate that you have forgotten to pass a mandatory parameter to some function. For example, on the code fallback([mux_audio(x),...]), liquidsoap will complain as follows:

At line ...:
Error 5: this value has type
 [(?id : _, audio : _) -> _]
but it should be a subtype of the type of the value at ../libs/switches.liq, line 11, char 11-18
 [source(_)] (inferred at ../libs/list.liq, line 102, char 29)

Indeed, fallback expects a source, but mux_audio(x) is still a function expecting the audio parameter.

That source is fallible!

See the quickstart, or read more about
sources.

Clock error

Read about clocks for the errors
a source cannot belong to two clocks
and
cannot unify two nested clocks.

We must catchup x.xx!

This error means that a clock is getting late in liquidsoap. This can
be caused by an overloaded CPU, if your script is doing too much encoding
or processing: in that case, you should reduce the load on your machine
or simplify your liquidsoap script. The latency may also be caused by
some lag, for example a network lag will cause the icecast output to
hang, making the clock late.

The first kind of latency is problematic because it tends to accumulate,
eventually leading to the restarting of outputs:

Too much latency!
Resetting active source...

The second kind of latency can often be ignored: if you are streaming to
an icecast server, there are several buffers between you and your
listeners which make this problem invisible to them. But in more realtime
applications, even small lags will result in glitches.

In some situations, it is possible to isolate some parts of a script
from the latency caused by other parts. For example, it is possible to
produce a clean script and back it up into a file, independently of
its output to icecast (which again is sensitive to network lags).
For more details on those techniques, read about clocks.

Unable to decode ``file’’ as {audio=pcm}!

This log message informs you that liquidsoap failed to decode a file, not
necessarily because it cannot handle the file, but also possibly because
the file does not contain the expected media type. For example, if audio and video
is expected, an audio file with no video will be rejected.

Liquidsoap is also able to convert audio channels in most situations. Typically,
if stereo data is expected but the file contains mono audio, liquidsoap will use
the single audio channel as both left and right channels.

Runtime exceptions

Liquidsoap scripts can raise runtime errors of the form:

At line 3, char 45:
Error 14: Uncaught runtime error:
type: not_found, message: "File not found!"

These are errors that the script programmer can catch and decide what to do when they
occur. Such errors will typically occur when trying to read a file that does not
exist and etc.

The language page has more details about errors, how to raise them
and how to catch them. You can head over there to get more information.

Crashes

Liquidsoap dies with messages such as these by the end of the log:

... [threads:1] Thread "XXX" aborts with exception YYY!
... [stderr:3] Thread 2 killed on uncaught exception YYY.
... [stderr:3] Raised at file ..., line ..., etc.

Those internal errors can be of two sorts:

	Bug: Normally, this means that you’ve found a bug, which you should report on the mailing list or bug tracker.

	User error: In some cases, we let an exception go on user errors, instead of nicely reporting and handling it. By looking at the surrounding log messages, you might realize that liquidsoap crashed for a good reason, that you are responsible for fixing. You can still report a bug: you should not have seen an exception and its backtrace.

In any case, once that kind of error happens, there is no way for the
user to prevent liquidsoap from crashing. Those exceptions cannot be
caught or handled in any way at the level of liquidsoap scripts.

Troubleshooting

Pulseaudio

When using ALSA input or output or, more generally any audio input or output
that is not using pulseaudio, you should disable pulseaudio, which is often installed
by default. Pulseaudio emulates ALSA but this also generates bugs,
in particular errors of this form:

Alsa.Unknown_error(1073697252)!

There are two things you may do:

	Make sure your alsa input/output does not use pulseaudio

	Disable pulseaudio on your system

In the first case, you should first find out which sound card you want to use,
with the command aplay -l. An example of its output is:

**** List of PLAYBACK Hardware Devices ****
card 0: Intel [HDA Intel], device 0: STAC92xx Analog [STAC92xx Analog]
 Subdevices: 1/1
 Subdevice #0: subdevice #0

In this case, the card we want to use is: device 0, subdevice 0, thus:
hw:0,0. We now create a file /etc/asound.conf (or ~/.asoundrc for single-user
configuration) that contains the following:

pcm.liquidsoap {
 type plug
 slave { pcm "hw:0,0" }
}

This creates a new alsa device that you can use with liquidsoap. The plug operator
in ALSA is used to work-around any hardware limitations in your device (mixing multiple
outputs, resampling etc.). In some cases you may need to read more about ALSA and define
your own PCM device.

Once you have created this device, you can use it in liquidsoap as follows:

input.alsa(device="pcm.liquidsoap", ...)

In the second case – disabling pulseaudio, you can edit the file /etc/pulse/client.conf and
change or add this line:

autospawn = no

And kill any running pulseaudio process:

killall pulseaudio

Otherwise you may simply remove pulseaudio’s packages, if you use Debian or Ubuntu:

apt-get remove pulseaudio libasound2-plugins

Listeners are disconnected at the end of every track

Several media players, including renowned ones, do not properly support
Ogg/Vorbis streams: they treat the end of a track as an end of file,
resulting in the disconnection.

Players that are affected by this problem include VLC.
Players that are not affected include ogg123, liquidsoap.

One way to work around this problem is to not use Ogg/Vorbis (which we
do not recommend) or to not produce tracks within a Vorbis stream.
This is done by merging liquidsoap tracks (for example using
add(normalize=false,[blank(),source]))
and also not passing any metadata
(which is also a result of the previous snippet).

Encoding blank

Encoding pure silence is often too effective for streaming: data is so
compressed that there is nothing to send to listeners, whose clients
eventually disconnect. Therefore, it is a good idea to use a non-silent
jingle instead of blank() to fill in the blank. You can
also achieve various effects using synthesis sources such as
noise(), sine(), etc.

Temporary files

Liquidsoap relies on OCaml’s Filename.tmp_dir_name variable to store temporary
files. It is documented as follows:

The name of the temporary directory: Under Unix, the value of the TMPDIR environment
variable, or "/tmp" if the variable is not set. Under Windows, the value of the TEMP
environment variable, or "." if the variable is not set.

FFmpeg Support

Since the 2.0.x release cycle, liquidsoap integrates a tight support of ffmpeg. This includes:

	Decoders

	Encoders

	Filters

	Bitstream filters

	Encoded data tweaks

	Examples

Ffmpeg support includes 3 types of content:

	Internal content, that is content available to all liquidsoap operators: PCM audio and YUV420p video

	Raw content, that is decoded content but stored as ffmpeg internal frame.
This type of content is only available to ffmpeg filters and raw encoders. It can be used to avoid data copies back and forth between liquidsoap and ffmpeg.

	Copy content, that is encoded content stored as ffmpeg internal packets.
This type of content is only available to ffmpeg copy encoder and bitstream filters and requires a fairly good understanding of media codecs and containers.
Copy contents can be used to avoid transcoding and pass encoded data end-to-end inside liquidsoap scripts.

Enabling ffmpeg support

FFmpeg support is available via the external ocaml-ffmpeg [https://github.com/savonet/ocaml-ffmpeg] binding package. If you are using any binary asset from
our release pages or via docker, this should already be included.

If you are installing via opam [https://opam.ocaml.org/], installing the ffmpeg package should do the trick:

% opam install ffmpeg

fdk-aac support in ffmpeg

One common question is how to install ffmpeg with fdk-aac support. This can get tricky because you need the ffmpeg shared libraries compiled with libfdk-aac.
This means that installing libfdk-aac alone will not be enough, you might also need to recompile ffmpeg to take advantage of it.

When recompiling ffmpeg, make sure that the --enable-shared argument is passed to the configure script. Also, compiling the shared libraries is different
than downloading the ffmpeg command line. Most ffmpeg downloads include a static build of ffmpeg that is, one that does not use or provide shared libraries.

On linux platforms, you can check what dynamic libraries liquidsoap is using using

ldd /path/to/liquidsopap

On macos, you can use otool -L. In the list of libraries, you should see libavcodec. In turn, you should be able to use the same command to inspect the libraries required by the libavcodec used by the liquidsoap binary. If this includes libfdk-aac, you’re good to go!

On debian, you might be able to use deb-multimedia.org [https://www.deb-multimedia.org/] to install a build of ffmpeg with libfdk-aac enabled. You are advised
to follow the instructions on the website for the latest up-to date guide. You may also refer to this conversation [https://github.com/savonet/liquidsoap/discussions/3027#discussioncomment-6072338].

Decoders

For the most part, you should never have to worry about the ffmpeg decoder. When enabled, it should be the preferred decoder for all supported media.
When using raw or copied content, the decoder is able to produce the required content without the need of any intervention on the user part.

Should you need to tweak it, here are a couple of pointers:

The settings.decoder.decoders settings controls which decoders are to be used when trying to decode media files.
You can use it to restrict which decoders are being used, for instance making sure only the ffmpeg decoder is used:

settings.decoder.decoders := ["FFMPEG"]

Priority for the decoder is set via:

settings.decoder.priorities.ffmpeg := 10

You can use this setting to adjust whether or not the ffmpeg decoder should be tried first when decoding media files, in particular in
conjunction with the other settings.decoder.priorities.* settings.

For each type of media codec, the settings.decoder.ffmpeg.codecs.* settings can be used to tell ffmpeg which decoder to use to
decode this type of content (there could more than one decoder for a given codec).

For instance, for the aac codec:

	settings.decoder.ffmpeg.codecs.aac.available() returns the list of available decoders, typically ["aac", "aac_fixed"].

	settings.decoder.ffmpeg.codecs.aac can be used to choose which decoder should be used, typically: settings.decoder.ffmpeg.codecs.aac := "aac"

When debugging issues with ffmpeg, it can be useful to increase the log verbosity.

settings.ffmpeg.log.verbosity := "warning"

This settings sets the verbosity of ffmpeg logs. Possible values, from less verbose to more verbose are:
"quiet", "panic", "fatal", "error", "warning", "info", "verbose" or "debug"

Please note that, due to a technical limitation, we are not yet able to route ffmpeg logs through
the liquidsoap logging facilities, which means that ffmpeg logs are currently only printed to the
process’s standard output and that the settings.ffmpeg.log.level is currently not used.

Decoder arguments

In some cases, for instance when sending raw PCM data, it might be required to pass some arguments to
the ffmpeg decoder to let it know what kind of format, codec, etc. it should decode.

There are two ways to do that:

	For streams, the content_type argument can be used. The convention is to use "application/ffmpeg;<arguments>".

	For files, the ffmpeg_options metadata can be used, for instance using the annotate protocol: annotate:ffmpeg_options="<arguments>":/path/to/file.raw

Here’s an example of a SRT input and output that can be used to send raw PCM data between two instances:

Sender:

enc = %ffmpeg(
 format="s16le",
 %audio(
 codec="pcm_s16le",
 ac=2,
 ar=48000
)
)

output.srt(enc, s)

Receiver:

s = input.srt(
 content_type="application/ffmpeg;format=s16le,ch_layout=stereo,sample_rate=48000"
)

If, instead of using output.srt above, we were using output.file and saving to a file
named bla.raw, this file could be read with a single source this way:

s = single("annotate:ffmpeg_options='format=s16le,ch_layout=stereo,sample_rate=44100':/tmp/bla.raw")

This could also be done in a playlist or request.dynamic and etc.

Encoders

See detailed ffmpeg encoders article.

Filters

See detailed ffmpeg filters article.

Bitstream filters

FFmpeg bitstream filters are filters that modify the binary content of encoded data. They can be used to adjust certain aspects of
media codecs and containers to make them fit some specific use, for instance a rtmp/flv output etc. They are particularly important
when dealing with live switches of encoded content (see Examples section).

The list of all bitstream filters is documented on FFmpeg [https://www.ffmpeg.org/ffmpeg-bitstream-filters.html] online doc and
our extra API reference. Here’s one such filter:

% liquidsoap -h ffmpeg.filter.bitstream.h264_mp4toannexb

FFmpeg h264_mp4toannexb bitstream filter. See ffmpeg documentation for more
details.

Type: (?id : string?, source(video=ffmpeg.copy('a), 'b)) ->
source(video=ffmpeg.copy('a), 'b)

Category: Source / FFmpeg filter

Arguments:

 * id : string?
 Force the value of the source ID.

 * (unlabeled) : source(video=ffmpeg.copy('a), 'b)

Methods:
...

Please consult the FFmpeg documentation for more details about that each filter do and why/how to use them.

Encoded data tweaks

Manipulating encoded content is powerful but can sometimes require some specific knowledge of internals aspects of media codecs and containers. This section
lists some specific cases.

Relaxed copy content compatibility check

By default, liquidsoap keeps track of the content passed in a stream containing ffmpeg encoded content (ffmpeg.copy) and only allows file and stream decoders to return strictly compatible
content, e.g. same video resolution or audio samplerate.

Some containers such as mp4, however, do allow stream where video resolution or audio samplerate changes between tracks. In this case, you can
relax those compatibility checks using the following setting:

settings.ffmpeg.content.copy.relaxed_compatibility_check := true

This is a global setting for now and could be refined per-stream in the future if the needs arises.

Shared encoders

liquisoap provides operators to encode data using %ffmpeg and re-use it across output. This is called inline encoding. Here’s an example:

audio_source = single(audio_url)
video_source = single(image)

stream = mux_video(video=video_source, audio_source)

stream = ffmpeg.encode.audio_video(
 %ffmpeg(
 %audio(codec="aac", b="128k"),
 %video(codec="libx264", b="4000k")
),
 stream
)

flv = %ffmpeg(
 format="flv",
 %audio.copy,
 %video.copy,
)

Send to one youtube output:
output.youtube.live.rtmp(
 encoder = flv,
 stream,
 ...
)

mpegts = %ffmpeg(
 format="mpegts",
 %audio.copy,
 %video.copy,
)

And to a hls one:
output.file.hls(
 ["mpegts", mpegts],
 stream,
 ...
)

Working with encoded data, however, requires a bit of knowledge of ffmpeg internal and media codecs and containers. Here, for instance, this stream
will have issues because the flv format requires global data, something that in ffmpeg terms is called extradata.

When working with a single encoder such as:

%ffmpeg(
 format="flv",
 %audio(codec="aac", b="128k"),
 %video(codec="libx264", b="4000k")
)

We are aware when initializing the encoders that it is aimed for a flv container so the code implicitly enables the global header for each encoder.

However, when encoding inline, we do not know at the time of encoding the container that will be used to encapsulate the stream, even worst, it can be
used potentially with different containers with different requirements!

In our case here, you have two ways to solve the issue:

If you know that all the containers will be okay with global header, you can enable the corresponding flag in the encoder:

stream = ffmpeg.encode.audio_video(
 %ffmpeg(
 %audio(codec="aac", b="128k", flags="+global_header"),
 %video(codec="libx264", b="4000k", flags="+global_header")
),
 stream
)

However, it is also possible that one stream needs global header but not the other one, which is the case here with mpegts. In this case, you can
use the bitstream filter ffmpeg.filter.bitstream.extract_extradata to extract global data to only one stream:

audio_source = single(audio_url)
video_source = single(image)

stream = mux_video(video=video_source, audio_source)

stream = ffmpeg.encode.audio_video(
 %ffmpeg(
 %audio(codec="aac", b="128k"),
 %video(codec="libx264", b="4000k")
),
 stream
)

flv = %ffmpeg(
 format="flv",
 %audio.copy,
 %video.copy,
)

flv_stream = ffmpeg.filter.bitstream.extract_extradata(stream)

Send to one youtube output:
output.youtube.live.rtmp(
 encoder = flv,
 flv_stream,
 ...
)

mpegts = %ffmpeg(
 format="mpegts",
 %audio.copy,
 %video.copy,
)

And to a hls one:
output.file.hls(
 ["mpegts", mpegts],
 stream,
 ...
)

Examples

See detailed ffmpeg cookbook article.

FFmpeg cookbook

Here are some examples of what is possible to do with the ffmpeg support in liquidsoap:

Relaying without re-encoding

With ffmpeg support, Liquidsoap can relay encoded streams without re-encoding them, making it possible to re-send a stream to multiple destinations. Here’s an example:

Input the stream,
from an Icecast server or any other source
encoded_source = input.http("https://icecast.radiofrance.fr/fip-hifi.aac")

Send to one server here:
output.icecast(
 %ffmpeg(format="adts", %audio.copy),
 fallible=true,
 mount="/restream",
 host="streaming.example.com", port=8000, password="xxx",
 encoded_source)

An another one here:
output.icecast(
 %ffmpeg(format="adts", %audio.copy),
 fallible=true,
 mount="/restream",
 host="streaming2.example.com", port=8000, password="xxx",
 encoded_source)

We cannot use mksafe here because the content is not plain pcm samples, which this operator is designed to produce. There
are several ways to make the source infallible, however, either by providing a single(...) source with the same encoded content
as we expect from encoded_source or by creating an infallible source using ffmpeg.encode.audio.

On-demand relaying without re-encoding

Another refinement on the previous example is the capacity to relay a stream only when listeners are connected to it,
all without re-encoding the content.

To make it work, you will need a format that can be handled by ffmpeg for that purpose. mp3 is a good example.

In the script below, you need to match the encoded format of the stream with a blank file (or any other file).
The output.harbor will then relay the data from the file if no one is connected and start/stop the underlying
input when there are listeners:

stream = input.http(start = false, "https://wwoz-sc.streamguys1.com/wwoz-hi.mp3")

listeners_count = ref(0)

def on_connect(~headers, ~uri, ~protocol, _) =
 listeners_count := !listeners_count + 1
 if !listeners_count > 0 and not stream.is_started() then
 log("Starting input")
 stream.start()
 end
end

def on_disconnect(_) =
 listeners_count := !listeners_count - 1
 if !listeners_count == 0 and stream.is_started() then
 log("Stopping input")
 stream.stop()
 end
end

blank = single("/tmp/blank.mp3")

stream = fallback(track_sensitive=false, [stream, blank])

output.harbor(
 %ffmpeg(format="mp3", %audio.copy),
 format="audio/mpeg",
 mount="relay",
 on_connect=on_connect,
 on_disconnect=on_disconnect,
 stream)

Shared encoding

Liquidsoap can also encode in one place and share the encoded with data with multiple outputs, making it possible to
minimize CPU resources. Here’s an example adapted from the previous one:

Input the stream,
from an Icecast server or any other source
source = input.http("https://icecast.radiofrance.fr/fip-hifi.aac")

Make it infallible:
source = mksafe(source)

Encode it in mp3:
source = ffmpeg.encode.audio(
 %ffmpeg(%audio(codec="libmp3lame")),
 source)

Send to one server here:
output.icecast(
 %ffmpeg(format="mp3", %audio.copy),
 mount="/restream",
 host="streaming.example.com", port=8000, password="xxx",
 source)

An another one here:
output.icecast(
 %ffmpeg(format="mp3", %audio.copy),
 mount="/restream",
 host="streaming2.example.com", port=8000, password="xxx",
 source)

Shared encoding is even more useful when dealing with video encoding, which is very costly. Here’s a fun example
sharing audio and video encoding and sending to different destinations, both via Icecast and to YouTube/Facebook
via the rtmp protocol:

An audio source
audio = ...

Encode it in mp3
audio = ffmpeg.encode.audio(
 %ffmpeg(%audio(codec="libmp3lame")),
 audio)

Send it to icecast
output.icecast(
 %ffmpeg(format="mp3", %audio.copy),
 host = "...",
 password = "...",
 mount = "/stream",
 audio
)

A video source, for instance a static image
video = ...

Encode it in h264 format
video = ffmpeg.encode.video(
 %ffmpeg(%video(codec="libx264")),
 video)

Mux it with the audio
stream = mux_video(video=video, audio)

Copy encoder for the rtmp stream
enc = %ffmpeg(
 format="flv",
 %audio.copy,
 %video.copy)

Send to YouTube
key = "..."
url = "rtmp://a.rtmp.youtube.com/live2/#{key}"
output.url(url=url, enc, stream)

Send to Facebook
key = "..."
url = "rtmps://live-api-s.facebook.com:443/rtmp/#{key}"
output.url(self_sync=true, url=url, enc, stream)

Add transparent logo and video

See: https://github.com/savonet/liquidsoap/discussions/1862

Live switch between encoded content

This is an ongoing development effort. Please refer to the online support channels if you are experiencing issues with this kind of feature.

Starting with liquidsoap 2.1.x, it is gradually becoming possible to do proper live switches on encoded content and send the
result to different outputs.

Please note that this requires a solid knowledge of media codecs, containers and ffmpeg bitstream filters. Different input and output
containers store codec binary data in different ways and those are not always compatible. This requires the use of bitstream filters
to adapt the binary data and, it’s possible some new filters will need to be written to support more combinations of input/output and codecs.

Here’s a use case that has been tested: live switch between a playlist of mp4 files and a rtmp flv input:

s1 = input.rtmp(listen=false,"rtmp://....")
s1 = ffmpeg.filter.bitstream.h264_mp4toannexb(s1)

s2 = playlist("/path/to/playlist")
s2 = ffmpeg.filter.bitstream.h264_mp4toannexb(s2)

s = fallback(track_sensitive=false, [s1, s2])

mpegts = %ffmpeg(
 format="mpegts",
 fflags="-autobsf",
 %audio.copy, %video.copy)

streams = [
 ("mpegts",mpegts),
]

output_dir = "/tmp/hls"

output.file.hls(playlist="live.m3u8",
 fallible=true,
 segment_duration=5.,
 output_dir,
 streams,
 s)

	We need the h264_mp4toannexb on each stream to make sure that the mp4 data conforms to what the mpegts container expect

	We need to disable ffmpeg’s automatic insertion of bitstream filters via -autobsf. FFmpeg does not support this kind of live switch at the moment and its automatically inserted filters won’t work, which is why we’re doing it ourselves.

That’s it! In the future we want to extend this use-case to also be able to output to a rtmp output from the same data. And more!

FFmpeg encoder

The %ffmpeg encoder should support all the options for ffmpeg’s muxers [https://ffmpeg.org/ffmpeg-formats.html#Muxers] and encoders [https://www.ffmpeg.org/ffmpeg-codecs.html], including private configuration options. Configuration value are passed as key/values, with values being of types: string, int, or float. If an option is not recognized (or: unused), it will raise an error during the instantiation of the encoder. Here are some configuration examples:

	AAC encoding at 22050kHz using fdk-aac encoder and mpegts muxer

%ffmpeg(format="mpegts",
 %audio(codec="libfdk_aac",samplerate=22050,b="32k",
 afterburner=1,profile="aac_he_v2"))

	Mp3 encoding using libshine at 48000kHz

%ffmpeg(format="mp3",%audio(codec="libshine",samplerate=48000))

	AC3 audio and H264 video encapsulated in a MPEG-TS stream

%ffmpeg(format="mpegts",
 %audio(codec="ac3",channel_coupling=0),
 %video(codec="libx264",b="2600k",
 "x264-params"="scenecut=0:open_gop=0:min-keyint=150:keyint=150",
 preset="ultrafast"))

	AC3 audio and H264 video encapsulated in a MPEG-TS stream using ffmpeg raw frames

%ffmpeg(format="mpegts",
 %audio.raw(codec="ac3",channel_coupling=0),
 %video.raw(codec="libx264",b="2600k",
 "x264-params"="scenecut=0:open_gop=0:min-keyint=150:keyint=150",
 preset="ultrafast"))

	Mp3 encoding using libmp3lame and video copy

%ffmpeg(format="mp3",
 %audio(codec="libmp3lame"),
 %video.copy)

The full syntax is as follows:

%ffmpeg(format=<format>,
 # Audio section
 %audio(codec=<codec>,<option_name>=<option_value>,..),
 # Or:
 %audio.raw(codec=<codec>,<option_name>=<option_value>,..),
 # Or:
 %audio.copy(<option>),
 # Video section
 %video(codec=<codec>,<option_name>=<option_value>,..),
 # Or:
 %video.raw(codec=<codec>,<option_name>=<option_value>,..),
 # Or:
 %video.copy(<option>),
 # Generic options
 <option_name>=<option_value>,..
)

Where:

	<format> is either a string value (e.g. "mpegts"), as returned by the ffmpeg -formats command or none. When set to none or simply no specified, the encoder will try to auto-detect it.

	<codec> is a string value (e.g. "libmp3lame"), as returned by the ffmpeg -codecs command.

	<option_name> can be any syntactically valid variable name or string. Strings are typically used when the option name is of the form: foo-bar.

	%audio(..) is for options specific to the audio codec. Unused options will raise an exception. Any option supported by ffmpeg can be passed here. Streams encoded using %audio are using liquidsoap internal frame format and are fully handled on the liquidsoap side.

	%audio.raw(..) behaves like %audio except that the audio data is kept as ffmpeg’s internal format. This can avoid data copy and is also the format required to use ffmpeg filters..

	%audio.copy copies data without decoding or encoding it. This is great to avoid using the CPU but, in this case, the data cannot be processed through operators that modify it such as fade.{in,out} aor smart_cross. Also, all stream must agree on the same data format.

	%video(..) is for options specific to the video codec. Unused options will raise an exception. Any option supported by ffmpeg can be passed here.

	%video.raw and %video.copy have the same meaning as their %audio counterpart.

	Generic options are passed to audio, video and format (container) setup. Unused options will raise an exception. Any option supported by ffmpeg can be passed here.

HLS output

The %ffmpeg encoder is the prime encoder for HLS output as it is the only one of our collection of encoder which can produce Mpeg-ts muxed data, which is required by most HLS clients.

File output

Some encoding formats, for instance mp4 require to rewing their stream and write a header after the fact, when encoding of the current track has finished. For historical reasons, such formats
cannot be used with output.file. To remedy that, we have introduced the output.url operator. When using this operator, the encoder is fully in charge of the output file and can thus write headers
after the fact. The %ffmpeg encoder is one such encoder that can be used with this operator.

Copy options

The %audio.copy and %video.copy encoders have two mutually exclusive options to handle keyframes:

	%audio.copy(wait_for_keyframe) and %video.copy(wait_for_keyframe): Wait until at least one keyframe has been passed to start passing encoded packets from a new stream.

	%audio.copy(ignore_keyframe) and %video.copy(ignore_keyframe): Ignore all keyframes.

These options are useful when switching from one encoded stream to the next.

With option wait_for_keyframe, the encoder discards any new packet at the beginning of a stream until a keyframe is passed. This means that playback will be paused until it can be resumed properly with no decoding glitches. This option is implemented globally when possible, i.e. in case of a video track with keyframes and an audio track with no keyframes, the audio track will discard packets until a video keyframe has been passed. This is the default option.

With option ignore_keyframe, the encoder starts passing encoded data right away. Content is immediately added but playback might get stuck until a new keyframe is passed.

It is worth noting that some audio encoders may also have keyframes.

Hardware acceleration

The %ffmpeg encoder supports multiple hardware acceleration provided by ffmpeg.

If you are lucky and the encoder you are using provides support for hardware acceleration without any specific configuration, all you might have to do is
select codec="..." (for instance on macos, codec="h264_videotoolbox") and it should work immediately.

The type of hardware acceleration provided by ffmpeg are:

	Internal hardware acceleration that works without any specific configuration. This is the happy path described above!

	Device-based hardware acceleration that works with a specific device.

	Frame-based hardware acceleration that work with a specific pixel format.

The type of hardware acceleration to use for a given stream can be specified using the hwaccel option. Its value is one of: "auto", "none", "internal", "device" or "frame".

For device-based hardware acceleration, the device to use can be specified using hwaccel_device. For frame-based hardware acceleration, the pixel format can be specified using hwaccel_pixel_format. In most cases, liquidsoap should be able to guess these values from the codec.

Here’s an example:

enc = %ffmpeg(
 format="mpegts",
 %video(
 hwaccel="device",
 hwaccel_devic="/dev/...",
 ...
)
)

Hardware acceleration support is, of course, very hardware dependent so we might not have tested all possible combinations. If you are having issues setting it up, do not hesitate to get in touch with us to see if your use-case is properly covered.

FFmpeg filters

FFmpeg filters [https://ffmpeg.org/ffmpeg-filters.html] provide audio and video filters that can be used
to transform content using the ffmpeg library. They are enabled in liquidsoap when compiled with the
optional ffmpeg-avfilter [https://github.com/savonet/ocaml-ffmpeg].

Filter as operators

If enabled, the filters should appear as operators, prefixed with ffmpeg.filter. For instance:

Ffmpeg filter: Add echoing to the audio.

Type: (?in_gain : float?, ?out_gain : float?,
 ?delays : string?, ?decays : string?,
 ffmpeg.filter.graph, ffmpeg.filter.audio) ->
ffmpeg.filter.audio

Category: Liquidsoap

Parameters:

 * in_gain : float? (default: null)
 set signal input gain. (default: 0.6)

 * out_gain : float? (default: null)
 set signal output gain. (default: 0.3)

 * delays : string? (default: null)
 set list of signal delays. (default: "1000")

 * decays : string? (default: null)
 set list of signal decays. (default: "0.5")

 * (unlabeled) : ffmpeg.filter.graph (default: None)

 * (unlabeled) : ffmpeg.filter.audio (default: None)

Filters input and output are abstract values of type ffmpeg.filter.audio and ffmpeg.filter.video. They can be created
using ffmpeg.filter.audio.input, ffmpeg.filter.video.input. These operators take media tracks as input.

Conversely, tracks can be created from them using ffmpeg.filter.audio.output and ffmpeg.filter.video.output.

Filters are configured within the closure of a function. Here’s an example:

def flanger_highpass(audio_track) =
 def mkfilter(graph) =
 audio_track = ffmpeg.filter.audio.input(graph, audio_track)
 audio_track = ffmpeg.filter.flanger(graph, audio_track, delay=10.)
 audio_track = ffmpeg.filter.highpass(graph, audio_track, frequency=4000.)
 ffmpeg.filter.audio.output(graph, audio_track)
 end

 ffmpeg.filter.create(mkfilter)
end

This filter receives an audio input, creates a ffmpeg.filter.audio.input with it that can be passed
to filters, applies a flanger effect and then a high pass effect, creates an audio output from it and returns it.

Here’s another example for video:

def hflip(video_track) =
 def mkfilter(graph) =
 video_track = ffmpeg.filter.video.input(graph, video_track)
 video_track = ffmpeg.filter.hflip(graph, video_track)
 ffmpeg.filter.video.output(graph, video_track)
 end

 ffmpeg.filter.create(mkfilter)
end

This filter receives a video input, creates a ffmpeg.filter.video.input with it that can be passed to filters,
applies a hflip filter (flips the video vertically), creates a video output from it and returns it.

Applying filters to a source

When applying a filter, the input is placed in a clock that is driven by the output. This means that you cannot share other tracks from the
input to the output. This can be an annoying source of confusion.

Thus, when applying FFMpeg filters to sources with audio and video tracks, it is recommended to pass all the tracks through the filter, even
if they are simply copied.

Here’s an example with the previous filter:

def hflip(s) =
 def mkfilter(graph) =
 let { audio = audio_track, video = video_track} = source.tracks(s)

 video_track = ffmpeg.filter.video.input(graph, video_track)
 video_track = ffmpeg.filter.hflip(graph, video_track)

 audio_track = ffmpeg.filter.audio.input(graph, audio_track)
 audio_track = ffmpeg.filter.acopy(graph, audio)

 video_track = ffmpeg.filter.video.output(graph, video_track)
 audio_track = ffmpeg.filter.audio.output(graph, audio_track)

 source({
 audio = audio_track,
 video = video_track,
 metadata = track.metadata(audio_track),
 track_marks = track.track_marks(audio_track)
 })
 end

 ffmpeg.filter.create(mkfilter)
end

FFmpeg filters are very powerful, they can also convert audio to video, for instance displaying information about the
stream, and they can combined into powerful graph processing filters.

Filter commands

Some filters support changing options at runtime [https://ffmpeg.org/ffmpeg-filters.html#Changing-options-at-runtime-with-a-command] with a command. These are also
supported in liquidsoap.

In order to do so, you have to use a slightly different API:

def dynamic_volume(s) =
 def mkfilter(graph) =
 filter = ffmpeg.filter.volume.create(graph)

 def set_volume(v) =
 ignore(filter.process_command("volume", "#{v}"))
 end

 let {audio = audio_track} = source.tracks(s)

 audio_track = ffmpeg.filter.audio.input(graph, audio_track)
 filter.set_input(audio_track)
 audio_track = filter.output
 audio_track = ffmpeg.filter.audio.output(graph, audio_track)

 s = source({
 audio = audio_track,
 metadata = track.metadata(audio_track),
 track_marks = track.track_marks(audio_track)
 }

 (s, set_volume)
 end

 ffmpeg.filter.create(mkfilter)
end

let (s, set_volume) = dynamic_volume(s)

First, we instantiate a volume filter via ffmpeg.filter.volume.create. The filter instance has a process_command, which we use to create the set_volume function. Then,
we apply the expected input to the filter and return the pair (s, set_volume) of source and function.

The ffmpeg.filter.<filter>.create API is intended for advanced use if you want to use filter commands. Otherwise, ffmpeg.filter.<filter> provides a more straight forward
API to filters.

Filters with dynamic inputs or outputs

Filters with dynamic inputs or outputs can have multiple inputs or outputs, decided at run-time. Typically, ffmpeg.filter.split
splits a video stream into multiple streams and ffmpeg.filter.merge merges multiple video streams into a single one.

For these filters, the operators’ signature is a little different. Here’s an example for dynamic outputs:

% liquidsoap -h ffmpeg.filter.asplit

Ffmpeg filter: Pass on the audio input to N audio outputs. This filter has
dynamic outputs: returned value is a tuple of audio and video outputs. Total
number of outputs is determined at runtime.

Type: (?outputs : int?, ffmpeg.filter.graph,
 ffmpeg.filter.audio) ->
[ffmpeg.filter.audio] * [ffmpeg.filter.video]

Category: Liquidsoap
Flag: extra

Parameters:

 * outputs : int? (default: null)
 set number of outputs. (default: 2)

 * (unlabeled) : ffmpeg.filter.graph (default: None)

 * (unlabeled) : ffmpeg.filter.audio (default: None)

This filter returns a tuple (audio, video) of possible dynamic outputs.

Likewise, with dynamic inputs:

% liquidsoap -h ffmpeg.filter.amerge

Ffmpeg filter: Merge two or more audio streams into a single multi-channel
stream. This filter has dynamic inputs: last two arguments are lists of audio
and video inputs. Total number of inputs is determined at runtime.

Type: (?inputs : int?, ffmpeg.filter.graph,
 [ffmpeg.filter.audio], [ffmpeg.filter.video]) ->
ffmpeg.filter.audio

Category: Liquidsoap
Flag: extra

Parameters:

 * inputs : int? (default: null)
 specify the number of inputs. (default: 2)

 * (unlabeled) : ffmpeg.filter.graph (default: None)

 * (unlabeled) : [ffmpeg.filter.audio] (default: None)

 * (unlabeled) : [ffmpeg.filter.video] (default: None)

This filter receives an array of possible audio inputs as well as an array of possible video inputs.

Put together, this can be used as such:

def parallel_flanger_highpass(s) =
 def mkfilter(graph) =
 audio_track = ffmpeg.filter.audio.input(graph, audio_track)

 let (audio, _) = ffmpeg.filter.asplit(outputs=2, graph, audio_track)

 let [a1, a2] = audio

 a1 = ffmpeg.filter.flanger(graph, a1, delay=10.)
 a2 = ffmpeg.filter.highpass(graph, a2, frequency=4000.)

 # For some reason, we need to enforce the format here.
 a1 = ffmpeg.filter.aformat(sample_fmts="s16", sample_rates="44100", channel_layouts="stereo", graph, a1)
 a2 = ffmpeg.filter.aformat(sample_fmts="s16", sample_rates="44100", channel_layouts="stereo", graph, a2)

 audio_track = ffmpeg.filter.amerge(inputs=2, graph, [a1, a2], [])

 ffmpeg.filter.audio.output(graph, audio_track)
 end

 ffmpeg.filter.create(mkfilter)
end

Developping Flows

Flows is handled on the Heroku [https://www.heroku.com/] platform.

Getting started

First steps to get started.

	Create an account on Heroku [https://www.heroku.com/].

	Install the Heroku utilities [https://toolbelt.heroku.com/].

	Ask a Liquidsoap administrator to give you access to the repositories.

The repositories of the main components are organized as follows.

	savonet-flows is the python handler to submit metadata:

	the associated github repository [https://github.com/savonet/flows-submit]

	the Heroku repository is git@heroku.com:savonet-liquidsoap.git

	savonet-flows-socket is the node application to serve the webpage and client stuff.

	the associated github repository [https://github.com/savonet/flows-push]

	the test Heroku webpage [http://savonet-flows-socket.herokuapp.com/] is updated by pushing on git@heroku.com:savonet-flows-socket-next.git

	the prod Heroku webpage [http://savonet-flows-socket.herokuapp.com/] is updated by pushing on git@heroku.com:savonet-flows-socket.git

Some more experimental repositories include:

	a command-line client [https://github.com/savonet/flows-client]

Useful commands

Getting the environment variables:

heroku config -s --app savonet-flows

Seeing the logs of the socket application:

heroku logs -t --app savonet-flows-socket

Fréquence 3

Fréquence 3 [http://www.frequence3.fr] uses Liquidsoap mainly on the backstage,
for different purposes:

	transcoding for different formats (OGG, weird MP3 relays…)

	scheduling and playlist for audio backup streams, and test streams

	blank detection

They look forward to using Liquidsoap even more, and work with the Savonet team
to make sure this tool can ease the work of webradios :)

They provide an MP3 stream here [http://streams.frequence3.net/mp3-128.m3u].

Geek Radio

The historical webradio, founded by David Baelde and Samuel Mimram at the ENS
Lyon.

The very first version was, as many other radios, a Perl function called by
Ices. It played files, one by one. On the campus, there was plenty of audio
files available, so they soon wanted to index them and be able to ask easily for
one file to be streamed. Samuel made a dirty campus indexer in OCaml, and David
made an ugly Perl hack for adding user requests to the original system. It
probably kind of worked for a while. Then they wanted something more, and
realized it was all too ugly.

So they made the binding of libshout for OCaml and built the first streamer in
pure OCaml. It had a simple telnet interface so an IRC bot could send user
requests easily to it, same for the website. There were two request queues, one
for users, one for admins. But it was still not so nicely designed, and they
felt it when they needed more. They wanted scheduling, especially techno music
at night.

Around that time students had to set up a project for one of their
courses. David and Samuel proposed to build a complete flexible webradio system,
that’s Savonet. To give jobs to everybody, they had planned a complete rewriting
of every part, with grand goals. A new website with so much features, a new
intelligent multilingual bot, a new network libraries for glueing that,
etc. Most died. But still, Liquidsoap was born, and they had plenty of new
libraries for OCaml. Since then, Liquidsoap has been greatly enhanced, and is
now spreading outside the ENS Lyon.

Features

The liquidsoap script schedules several static (but periodically reloaded)
playlists played on different times, adds jingle to the usual stream every hour,
adds short live interventions, or completely switches to live shows when
available. It accepts user requests, which have priority over static playlists
but not live shows, and adds speech-synthetized metadata information at the end
of requests.

Geek Radio used to have a Strider daemon running to fill our database. Since
that project is now dead, a simple hack is now used instead: bubble.

The usual way of sending a request is via an IRC bot, which queries the database
and sends the chosen URI to liquidsoap.

The Gstreamer encoder

The %gstreamer encoder can be used to encode streams using the gstreamer multimedia framework.
This encoder extends liquidsoap with all available GStreamer formats (provided they are
compatible with liquidsoap’s model of streams, see Caveats section below), which includes a
huge array of encoders.

Presentation

A basic understanding of gstreamer’s pipelines and configuration should be expected in order to
understand the following documentation.

The encoder’s parameters are as follows:

%gstreamer(channels=2,
 audio="lamemp3enc",
 has_video=true,
 video="x264enc",
 muxer="mpegtsmux",
 metadata="metadata",
 log=5,
 pipeline="")

Without using the pipeline argument, the audio and video arguments are used to build the
gstreamer pipeline used to encode. By setting the log parameter to a lower value or by using
log.level := ..., you should be able to see some example.

Basic examples

Here are a couple of examples:

An MP3 encoder that expects sources of type audio=2, video=0, midi=0:

% liquidsoap 'output.file(%gstreamer(audio="lamemp3enc",
 muxer="",
 video="",
 log=3),...)'
(...)
2012/12/13 19:16:23 [encoder.gstreamer:3] Gstreamer encoder pipeline: appsrc
 name="audio_src" block=true caps="audio/x-raw,format=S16LE,layout=interleaved,
 channels=2,rate=44100" format=time ! queue ! audioconvert ! audioresample !
 lamemp3enc ! appsink name=sink sync=false emit-signals=true

A x264 encoder that expects sources of type audio=0, video=1, midi=0:

% liquidsoap 'output.file(%gstreamer(audio="",
 muxer="mpegtsmux",
 video="x264enc",
 log=3),...)'
(...)
2012/12/13 19:14:43 [encoder.gstreamer:3] Gstreamer encoder pipeline: appsrc
 name="video_src" block=true caps="video/x-raw,format=RGBA,width=320,height=240,
 framerate=25/1,pixel-aspect-ratio=1/1" format=time blocksize=307200 ! queue !
 videoconvert ! videoscale add-borders=true ! videorate ! x264enc !
 mpegtsmux name=muxer ! appsink name=sink sync=false emit-signals=true

An MPEG TS encoder that expects sources of type audio=2, video=1, midi=0:

% liquidsoap 'output.file(%gstreamer(audio="lamemp3enc",
 muxer="mpegtsmux",
 video="x264enc",
 log=3),...)'
(...)
2012/12/13 19:18:09 [encoder.gstreamer:3] Gstreamer encoder pipeline: appsrc
 name="audio_src" block=true caps="audio/x-raw,format=S16LE,
 layout=interleaved,channels=2,rate=44100" format=time ! queue ! audioconvert
 ! audioresample ! lamemp3enc ! muxer. appsrc name="video_src" block=true
 caps="video/x-raw,format=RGBA,width=320,height=240,framerate=25/1,
 pixel-aspect-ratio=1/1" format=time blocksize=307200 ! queue ! videoconvert
 ! videoscale add-borders=true ! videorate ! x264enc ! muxer. mpegtsmux
 name=muxer ! appsink name=sink sync=false emit-signals=true

An ogg/vorbis+theora encoder that expects source of type audio=1, video=1, midi=0:

% liquidsoap 'output.file(%gstreamer(audio="vorbisenc",
 muxer="oggmux",
 video="theoraenc",
 channels=1,
 log=3),...)'
(...)
2012/12/13 19:21:17 [encoder.gstreamer:3] Gstreamer encoder pipeline: appsrc
 name="audio_src" block=true caps="audio/x-raw,format=S16LE,layout=interleaved,
 channels=1,rate=44100" format=time ! queue ! audioconvert ! audioresample !
 vorbisenc ! muxer. appsrc name="video_src" block=true caps="video/x-raw,
 format=RGBA,width=320,height=240,framerate=25/1,pixel-aspect-ratio=1/1"
 format=time blocksize=307200 ! queue ! videoconvert ! videoscale add-borders=true
 ! videorate ! theoraenc ! muxer. oggmux name=muxer ! appsink name=sink
 sync=false emit-signals=true

For advanced users, the pipeline argument can be used to override the whole pipeline. For instance:

% liquidsoap 'output.file(%gstreamer(pipeline="appsrc name=\"audio_src\"
 block=true caps=\"audio/x-raw,format=S16LE,layout=interleaved,
 channels=1,rate=44100\" format=time ! lamemp3enc ! appsink name=sink
 sync=false emit-signals=true",channels=1,log=3),...)'
(...)

Content type inference

When starting its sources and outputs, liquidsoap determines the content type of each source (audio, video and midi channels).
During that process, encoders have to inform liquidsoap what type of sources they are expecting. It works as follows for the %gstreamer
encoder:

	If the audio parameter is a string different than "" then the encoder expects a stream with channels audio channels.

	If the video parameter is a string different than "" then the encoder expects a stream with 1 video channel.

	If the pipeline parameter is a string different than "" then the encoder expects a stream with channels audio channels and a video channels only if has_video is true.

The has_video parameter is only used when using the pipeline parameter.

Metadata

The %gstreamer encoder tries to also encode metadata attached to the stream. This requires that you specify a pipeline element
named according to the metadata parameter (default: "metadata") that can be used with GStreamer’s tag_setter API. Here are two such examples:

An ogg/vorbis encoder with vorbis tags:

% liquidsoap 'output.file(%gstreamer(audio="vorbisenc ! vorbistag name='metadata'",
 muxer="oggmux",
 video=""),...)'

An MP3 encoder with id3v2 tags:

% liquidsoap 'output.file(%gstreamer(audio="lamemp3enc",
 muxer="id3v2mux",
 video="",
 metadata="muxer"),...)'

In the last example, we tell the %gstreamer encoder that the element for injecting metadata is named
"muxer" because, for id3v2 tags, the gstreamer muxer element is also the element used to inject metadata
and the "muxer" name is implicitly added by liquidsoap to the muxer element. You can see that by printing
out the constructed pipeline, as shown before.

Caveats

When using the %gstreamer encoder, one must think of it as an encoder for an infinite stream. This, in particular,
means that not all containers (muxers) will work. For instance, the AVI and MP4 containers need to write in their
header information that are only known with finite streams, such as the stream total’s time and etc.. These containers
are usually not fit for streaming, which is liquidsoap’s main functionality.

Harbor input

Liquidsoap is also able to receive a source using icecast or shoutcast source protocol with
the input.harbor operator. Using this operator, the running liquidsoap will open
a network socket and wait for an incoming connection.

This operator is very useful to seamlessly add live streams
into your final streams:
you configure the live source client to connect directly to liquidsoap,
and manage the switch to and from the live inside your script.

Additionally, liquidsoap can handle many simultaneous harbor sources on different ports,
with finer-grained authentication schemes that can be particularly useful when used with
source clients designed for the shoutcast servers.

SSL support in harbor can be enabled using of of the following opam packages: ssl, osx-secure-transport.
If enabled using ssl, input.harbor.ssl will be available. If enabled with osx-secure-transport, it will be
input.harbor.secure_transport.

Parameters

The global parameters for harbor can be retrieved using
liquidsoap --list-settings. They are:

	harbor.bind_addr: IP address on which the HTTP stream receiver should listen. The default is "0.0.0.0". You can use this parameter to restrict connections only to your LAN.

	harbor.timeout: Timeout for source connection, in seconds. Defaults to 30..

	harbor.verbose: Print password used by source clients in logs, for debugging purposes. Defaults to: false

	harbor.reverse_dns: Perform reverse DNS lookup to get the client’s hostname from its IP. Defaults to: true

	harbor.icy_formats: Content-type (mime) of formats which allow shout (ICY) metadata update. Defaults to: ["audio/mpeg"; "audio/aacp"; "audio/aac"; "audio/x-aac"; "audio/wav"; "audio/wave"]

If SSL support was enabled via ssl, you will have the following additional settings:

	harbor.ssl.certificate: Path to the SSL certificate.

	harbor.ssl.private_key: Path to the SSL private key (openssl only).

	harbor.ssl.password: Optional password to unlock the private key.

Obtaining a proper SSL certificate can be tricky. You may want to start with a self-signed certificate first.
You can obtain a free, valid certificate at: https://letsencrypt.org/

If SSL support is enable via osx-secure-transport, you will have the same settings but named: harbor.secure_transport.*.

To create a self-signed certificate for local testing you can use the following one-liner:

openssl req -x509 -newkey rsa:4096 -sha256 -nodes -keyout server.key -out server.crt -subj "/CN=localhost" -days 3650

You also have per-source parameters. You can retrieve them using the command
liquidsoap -h input.harbor. The most important one are:

	user, password: set a permanent login and password for this harbor source.

	auth: Authenticate the user according to a specific function.

	port: Use a custom port for this input.

	icy: Enable ICY (shoutcast) source connections.

	id: The mountpoint registered for the source is also the id of the source.

When using different ports with different harbor inputs, mountpoints are attributed
per-port. Hence, there can be a harbor input with mountpoint "foo" on port 1356
and a harbor input with mountpoint "foo" on port 3567. Additionally, if an harbor
source uses custom port n with shoutcast (ICY) source protocol enabled, shoutcast
source clients should set their connection port to n+1.

The auth function is a function, that takes a record {user, password, address} and returns a boolean representing whether the user
should be granted access or not. Typical example can be:

def auth(args) =
 # Call an external process to check
 # the credentials:
 # The script will return the string
 # "true" of "false"
 #
 # First call the script. Make sure to apply proper escaping
 # of the arguments to prevent command injection!
 ret = process.read.lines("/path/to/script \
 --user=#{args.user} --password=#{args.password}")
 # Then get the first line of its output
 ret = list.hd(default="",ret)
 # Finally returns the boolean represented
 # by the output (bool_of_string can also
 # be used)
 if ret == "true" then
 true
 else
 false
 end
end

In the case of the ICY (shoutcast) source protocol, there is no user parameter
for the source connection. Thus, the user used will be the user parameter passed
to the input.harbor source.

When using a custom authentication function, in case of a ICY (shoutcast) connection,
the function will receive this value for the username.

Usage

When using harbor inputs, you first set the required settings, as described above. Then, you define each source using input.harbor("mountpoint"). This source is faillible and will become available when a source client is connected.

The unlabeled parameter is the mount point that the source client may connect
to. It should be "/" for shoutcast source clients.

The source client may use any of the recognized audio input codec. Hence, when using shoucast source clients, you need to have compiled liquidsoap with mp3 decoding support (ocaml-mad)

A sample code can be:

settings.harbor.bind_addrs := ["0.0.0.0"]

Some code...

This defines a source waiting on mount point
/test-harbor
live = input.harbor("test-harbor",port=8080,password="xxx")

This is the final stream.
Uses the live source as soon as available,
and don't wait for an end of track, since
we don't want to cut the beginning of the live
stream.
#
You may insert a jingle transition here...
radio = fallback(track_sensitive=false,
 [live,files])

Harbor as HTTP server

The harbor server can be used as a HTTP server. We provide two type of APIs for this:

Simple API

The harbor.http.register.simple function provides a simple, easy to use registration API for quick
HTTP response implementation. This function receives a record describing the request and returns
the HTTP response.

The request passed to the function contains all expected information from the underlying HTTP
query.

The data method on a request is a string getter, that is a function of type: () -> string
which returns the empty string "" when all data has been consumed. You can use this function
to e.g. write the request data to a file using file.write.stream.

The body method can be used to read all of the request’s data and store it in
memory. Make sure to only use it if you know that the response should be small enough!

For convenience, a HTTP response builder is provided via harbor.http.response. Here’s an example:

def handler(request) =
 log("Got a request on path #{request.path}, protocol version: #{request.http_version}, \
 method: #{request.method}, headers: #{request.headers}, query: #{request.query}, \
 body: #{request.body()}")

 harbor.http.response(
 content_type="text/html",
 data="<p>ok, this works!</p>"
)
end

harbor.http.register.simple(port=8080, method="GET", path, handler)

where:

	port is the port where to receive incoming connections

	method is for the http method (or verb), one of: "GET", "PUT", "POST", "DELETE", "OPTIONS" and "HEAD"

	path is the matched path. It can include named fragments, e.g. "/users/:id/collabs/:cid". Named named fragments are passed via request.query, for instance: req.query["cid"].

Node/express API

The harbor.http.register function offers a higher-level API for advanced HTTP response implementation.
Its API is very similar to the node/express API. Here’s an example:

def handler(request, response) =
 log("Got a request on path #{request.path}, protocol version: #{request.http_version}, \
 method: #{request.method}, headers: #{request.headers}, query: #{request.query}, \
 body: #{request.body()}")

 # Set response code. Defaults to 200
 response.status_code(201)

 # Set response status message. Uses `status_code` if not specified
 response.status_message("Created")

 # Replaces response headers
 response.headers(["X-Foo", "bar"])

 # Set a single header
 response.header("X-Foo", "bar")

 # Set http protocol version
 response.http_version("1.1")

 # Same as setting the "Content-Type" header
 response.content_type("application/liquidsoap")

 # Set response data. Can be a `string` or a function of type `()->string` returning an empty string
 # when done such as `file.read`
 response.data("foo")

 # Advanced wrappers:

 # Sets content-type to json and data to `json.stringify({foo = "bla"})`
 response.json({foo = "bla"})

 # Sets `status_code` and `Location:` header for a HTTP redirect response. Takes an optional `status_code` argument.
 response.redirect("http://...")

 # Sets content-type to html and data to `"<p>It works!</p>"`
 response.html("<p>It works!</p>")
end

harbor.http.register(port=8080, method="GET", path, handler)

where:

	port is the port where to receive incoming connections

	method is for the http method (or verb), one of: "GET", "PUT", "POST", "DELETE", "OPTIONS" and "HEAD"

	path is the matched path. It can include named fragments, e.g. "/users/:id/collabs/:cid". Matched named fragments are passed via request.query, for instance: req.query["cid"].

The handler function receives a record containing all the information about the request and fills
up the details about the response, which is then used to write a proper HTTP response to the client.

Named fragments from the request path are passed to the response query list.

Middleware a la node/express are also supported and registered via http.harbor.middleware.register. See http.harbor.middleware.cors for an example of how to implement one such middleware.

Here’s how you would enable the cors middleware:

harbor.http.middleware.register(harbor.http.middleware.cors(origin="example.com"))

Https support

https is supported using either libssl or ocaml-tls. When compiled with either of them, a http.transport.ssl or http.transport.tls
is available and can be passed to each harbor operator:

transport = http.transport.ssl(
 # Server mode: required,
 # client mode: optional, add certificate to trusted pool
 certificate="/path/to/certificate/file",

 # Server mode: required, client mode: ignored
 key="/path/to/secret/key/file",

 # Required if key file requires one.
 # TLS does not support password encrypted keys!
 password="optional password"
)

harbor.http.register(transport=transport, port=8000, ...)

input.harbor(transport=..., port=8000, ...)

output.harbor(transport=..., port=8000, ...)

output.icecast(transport=..., port=8000, ...)

A given port can only support one type of transport at a time and registering handlers, sources or outputs on the same port with different transports
will raise a error.http error.

Advanced usage

All registration functions have a .regexp counter part, e.g. harbor.http.register.simple.regexp. These function accept
a full regular expression for their path argument. Named matches on the regular expression are also passed via the request’s query
parameter.

It is also possible to directly interact with the underlying socket using the simple API:

 # Custom response
 def handler(req) =
 req.socket.write("HTTP/1.0 201 YYR\r\nFoo: bar\r\n\r\n")
 req.socket.close()

 # Null indicates that we're using the socket directly.
 null()
 end

 harbor.http.register.simple("/custom", port=3456, handler)

Examples

These functions can be used to create your own HTTP interface. Some examples
are:

Redirect Icecast’s pages

Some source clients using the harbor may also request pages that
are served by an icecast server, for instance listeners statistics.
In this case, you can register the following handler:

Redirect all files other
than /admin.* to icecast,
located at localhost:8000
def redirect_icecast(request, response) =
 response.redirect("http://localhost:8000#{request.path}")
end

Register this handler at port 8005
(provided harbor sources are also served
from this port).
harbor.http.register.regexp(
 port=8005,
 method="GET",
 r/^\/(?!admin)/,
 redirect_icecast
)

Get metadata

You can use harbor to register HTTP services to
fecth/set the metadata of a source.

meta = ref([])

s = some source
s.on_metadata(fun (m) -> meta := m)

Return the json content of meta
def get_meta(_, response) =
 response.json(!meta)
end

Register get_meta at port 700
harbor.http.register(port=7000,method="GET","/getmeta",get_meta)

Once the script is running,
a GET request for /getmeta at port 7000
returns the following:

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8

{
 "genre": "Soul",
 "album": "The Complete Stax-Volt Singles: 1959-1968 (Disc 8)",
 "artist": "Astors",
 "title": "Daddy Didn't Tell Me"
}

Set metadata

Using insert_metadata, you can register a GET handler that
updates the metadata of a given source. For instance:

s = some source

Create a source equipped with a `insert_metadata` method:
s = insert_metadata(s)

The handler
def set_meta(request, response) =
 # Filter out unusual metadata
 meta = metadata.export(request.query)

 # Grab the returned message
 ret =
 if meta != [] then
 s.insert_metadata(meta)
 "OK!"
 else
 "No metadata to add!"
 end

 response.html("<html><body>#{ret}</body></html>")
end

Register handler on port 700
harbor.http.register(port=7000,method="GET","/setmeta",set_meta)

Now, a request of the form http://server:7000/setmeta?title=foo
will update the metadata of source s with [("title","foo")]. You
can use this handler, for instance, in a custom HTML form.

Get help

Liquidsoap is a self-documented application,
which means that it can provide help about several of its aspects.
You will learn here how to get help by yourself, by asking liquidsoap.
If you do not succeed in asking the tool, you can of course get help from
humans. We maintain the following communication channels:

	Slack: slack.liquidsoap.info [http://slack.liquidsoap.info/]

	IRC: #savonet on irc.libera.chat [https://libera.chat/] (through a slack bridge)

	Mailing list: savonet-users@lists.sourceforge.net

Scripting API

When scripting in liquidsoap, one uses functions that are either builtin
(e.g. input.http or output.icecast)
or defined in the script library (e.g output).
All these functions come with a documentation, that you can access by
executing liquidsoap -h FUNCTION on the command-line. For example:

$ liquidsoap -h sine

Generate a sine wave.

Type: (?id : string?, ?amplitude : {float}, ?duration : float,
 ?{float}) -> source(audio=internal('a),
video=internal('b), midi=internal('c))

Category: Source / Input

Parameters:

 * id : string? (default: null)
 Force the value of the source ID.

 * amplitude : {float} (default: 1.)
 Maximal value of the waveform.

 * duration : float (default: -1.)
 Duration in seconds (negative means infinite).

 * (unlabeled) : {float} (default: 440.)
 Frequency of the sine.

Methods:

 * fallible : bool
 Indicate if a source may fail, i.e. may not be ready to stream.

 * id : () -> string
 Identifier of the source.

 * is_active : () -> bool
 `true` if the source is active, i.e. it is continuously animated by its
 own clock whenever it is ready. Typically, `true` for outputs and
 sources such as `input.http`.

 * is_ready : () -> bool
 Indicate if a source is ready to stream. This does not mean that the
 source is currently streaming, just that its resources are all properly
 initialized.

 * is_up : () -> bool
 Indicate that the source can be asked to produce some data at any time.
 This is `true` when the source is currently being used or if it could be
 used at any time, typically inside a `switch` or `fallback`.

 * on_leave : ((() -> unit)) -> unit
 Register a function to be called when source is not used anymore by
 another source.

 * on_metadata : ((([string * string]) -> unit)) -> unit
 Call a given handler on metadata packets.

 * on_shutdown : ((() -> unit)) -> unit
 Register a function to be called when source shuts down.

 * on_track : ((([string * string]) -> unit)) -> unit
 Call a given handler on new tracks.

 * remaining : () -> float
 Estimation of remaining time in the current track.

 * seek : (float) -> float
 Seek forward, in seconds (returns the amount of time effectively
 seeked).

 * self_sync : () -> bool
 Is the source currently controlling its own real-time loop.

 * skip : () -> unit
 Skip to the next track.

 * time : () -> float
 Get a source's time, based on its assigned clock.

Of course if you do not know what function you need, you’d better go
through the API reference.

Please note that some functions
in that list are optional and may not be available with your local liquidsoap
install unless you install the optional dependency that enables it. The list of
optional dependencies is listed via opam info liquidsoap if you have installed
it this way or can in our build page.

Settings

Liquidsoap scripts contain expression like settings.log.stdout := true.
These are settings, global variables affecting the behaviour of the
application.

Some common settings have shortcut for convenience. These are all shortcuts to their respective settings values:

log.level :=4
log.file := true
log.stdout := true
init.daemon := true
audio.samplerate := 48000
audio.channels := 2
video.frame.width := 720
video.frame.height := 1280

You can have a list of available settings, with their documentation,
by running liquidsoap --list-settings.

The output of these commands is a valid liquidsoap script,
which you can edit to set the values that you want,
and load it (implicitly or not) before you other scripts.

You can browse online the list of available settings.

HLS Output

Starting with liquidsoap 1.4.0, it is possible to send your streams as HLS output [https://en.wikipedia.org/wiki/HTTP_Live_Streaming].

The main operator is output.file.hls. Here’s an example using it, courtesy of srt2hls [https://github.com/mbugeia/srt2hls]:

aac_lofi = %ffmpeg(format="mpegts",
 %audio(
 codec="aac",
 channels=2,
 ar=44100
))

aac_midfi = %ffmpeg(format="mpegts",
 %audio(
 codec="aac",
 channels=2,
 ar=44100,
 b="96k"
))

aac_hifi = %ffmpeg(format="mpegts",
 %audio(
 codec="aac",
 channels=2,
 ar=44100,
 b="192k"
))

streams = [("aac_lofi",aac_lofi),
 ("aac_midfi", aac_midfi),
 ("aac_hifi", aac_hifi)]

def segment_name(~position,~extname,stream_name) =
 timestamp = int_of_float(gettimeofday())
 duration = 2
 "#{stream_name}_#{duration}_#{timestamp}_#{position}.#{extname}"
end

output.file.hls(playlist="live.m3u8",
 segment_duration=2.0,
 segments=5,
 segments_overhead=5,
 segment_name=segment_name,
 persist_at="/path/to/state.config",
 "/path/to/hls/directory",
 streams,
 source)

Let’s see what’s important here:

	streams describes the encoded streams. It’s a list of: (stream_name, encoder). stream_name is used to generate
the corresponding media playlists. Encoders can be any encoder supported by liquidsoap. However, the HLS RFC [https://tools.ietf.org/html/rfc8216]
limits the list of possible codecs to mp3 and aac. Furthermore, for the best possible compatible, it is recommended
to send data encapsulated in a MPEG-TS stream. Currently, the only encoder capable of doing this in liquidsoap is %ffmpeg.

	persist_at is used to allow liquidsoap to restart while keeping the existing segments and playlists. When
shutting down, liquidsoap stores the current configuration at persist_at and uses it to restart the HLS stream when
restarting.

	segments and segments_overhead are used to keep track of the generated segments. Each media playlist will contain
a number of segments defined by segments and an extra set of segments, defined by segments_overhead, is kept past the playlist size for those
listeners who are still listening on outdated segments.

There are more useful options, in particular on_file_change, which can be used for instance to sync up your segments and playlists
to a distant storage and hosting service such as S3.

Liquidsoap also provides output.harbor.hls which allows to serve HLS streams directly from
liquidsoap. Their options should be the same as output.file.hls, except for harbor-specifc options port and path. It is
not recommended for listener-facing setup but can be useful to sync up with a caching system such as cloudfront.

Metadata

HLS outputs supports metadata in two ways:

	Through a timed_id3 metadata logical stream with the mpegts format.

	Through regular ID3 frames, as requested by the HLS specifications [https://datatracker.ietf.org/doc/html/rfc8216#section-3.4] for adts, mp3, ac3 and eac3 formats.

	There is currently no support for in-stream metadata for the mp4 format.

Metadata parameters are passed through the record methods of the streams’ encoders. Here’s an example

output.file.hls(
 "/path/to/directory",
 [
 ("aac",
 %ffmpeg(format="adts", %audio(codec="aac")).{
 id3_version = 3
 }),
 ("ts-with-meta",
 %ffmpeg(format="mpegts", %audio(codec="aac")).{
 id3_version = 4
 }),
 ("ts",
 %ffmpeg(format="mpegts", %audio(codec="aac")).{
 id3 = false
 }),
 ("mp3",
 %ffmpeg(format="mp3", %audio(codec="libmp3lame")).{
 replay_id3 = false
 })
],
 source
)

Parameters are:

	id3: Set to false to deactivate metadata on the streams. Defaults to true.

	id3_version: Set the id3v2 version used to export metadata

	replay_id3: By default, the latest metadata is inserted at the beginning of each segment to make sure new listeners always get the latest metadata. Set to false to disable it.

Metadata for these formats are activated by default. If you are experiencing any issues with them, you can disable them by setting id3 to false.

Mp4 format

mp4 container is supported by requires specific parameters. Here’s an example that mixes aac and flac audio, The parameters
required for mp4 are movflags and frag_duration.

radio = ...

aac_lofi = %ffmpeg(format="mp4",
 movflags="+dash+skip_sidx+skip_trailer+frag_custom",
 frag_duration=10,
 %audio(
 codec="aac",
 channels=2,
 ar=44100,
 b="192k"
))

flac_hifi = %ffmpeg(format="mp4",
 movflags="+dash+skip_sidx+skip_trailer+frag_custom",
 frag_duration=10,
 strict="-2",
 %audio(
 codec="flac",
 channels=2,
 ar=44100
))

flac_hires = %ffmpeg(format="mp4",
 movflags="+dash+skip_sidx+skip_trailer+frag_custom",
 frag_duration=10,
 strict="-2",
 %audio(
 codec="flac",
 channels=2,
 ar=48000
))

streams = [("aac_lofi", aac_lofi),
 ("flac_hifi", flac_hifi),
 ("flac_hires", flac_hires)]

output.file.hls(playlist="live.m3u8",
 "/path/to/directory",
 streams,
 radio)

HTTP input

Liquidsoap can create a source that pulls its data from an HTTP location. This location can
be a distant file or playlist, or an icecast or shoutcast stream.

To use it in your script, simply create a source that way:

url is a HTTP location, like
http://radiopi.org:8080/reggae
source = input.http(url)

This operator will pull regularly the given location for its data, so it should be used for
locations that are assumed to be available most of the time. If not, it might generate unnecessary
traffic and pollute the logs. In this case, it is perhaps better to inverse the paradigm and
use the input.harbor operator.

ICY metadata

ICY metadata is the name for the mechanism used to update
metadata in icecast’s source streams.
The techniques is primarily intended for data formats that do not support in-stream
metadata, such as mp3 or AAC. However, it appears that icecast also supports
ICY metadata update for ogg/vorbis streams.

When using the ICY metadata update mechanism, new metadata are submitted separately from
the stream’s data, via a http GET request. The format of the request depends on the
protocol you are using (ICY for shoutcast and icecast 1 or HTTP for icecast 2).

Starting with 1.0, you can do several interesting things with icy metadata updates
in liquidsoap. We list some of those here.

Enable/disable ICY metadata updates

You can enable or disable icy metadata update in output.icecast
by setting the send_icy_metadata parameter to null(), trueorfalse. The default value is null()` and does the following:

	Set true for: mp3, aac, aac+, wav

	Set false for any format using the ogg container

In some cases, liquidsoap might not be able to detect if
ICY metadata need to be enabled, in which case it will ask you
to set a true or false value for this parameter.

song metadata

Most Icecast listeners expect a song metadata to be generated. This metadata
should combine both artist and title metadata and will be played preferably.

We provide a default implementation that returns artist or title metadata
when only one of these two is available and $(artist) - $(title) otherwise.

You can use the icy_song parameter to use your own implementation. Returning
null() from that function disables the metadata altogether.

Update metadata manually

The function icy.update_metadata implements a manual metadata update
using the ICY mechanism. It can be used independently from the icy_metadata
parameter described above, provided icecast supports ICY metadata for the intended stream.

For instance the following script registers a telnet command name metadata.update
that can be used to manually update metadata:

def icy_update(v) =
 # Parse the argument
 l = string.split(separator=",",v)
 def split(l,v) =
 v = string.split(separator="=",v)
 if list.length(v) >= 2 then
 list.append(l,[(list.nth(v,0,default=""),list.nth(v,1,default=""))])
 else
 l
 end
 end
 meta = list.fold(split,[],l)

 # Update metadata
 icy.update_metadata(mount="/mystream",password="hackme",
 host="myserver.net",meta)
 "Done !"
end

server.register("update",namespace="metadata",
 description="Update metadata",
 usage="update title=foo,album=bar,..",
 icy_update)

As usual, liquidsoap -h icy.update_metadata lists all the arguments
of the function.

Using in production

The full installation of liquidsoap will typically install
/etc/liquidsoap, /etc/init.d/liquidsoap and /var/log/liquidsoap.
All these are meant for a particular usage of liquidsoap
when running a stable radio.

Your production .liq files should go in /etc/liquidsoap.
You’ll then start/stop them using the init script, e.g.
/etc/init.d/liquidsoap start.
Your scripts don’t need to have the #! line,
and liquidsoap will automatically be ran on daemon mode (-d option) for them.

You should not override the log.file.path setting because a
logrotate configuration is also installed so that log files
in the standard directory are truncated and compressed if they grow too big.

It is not very convenient to detect errors when using the init script.
We advise users to check their scripts after modification (use

liquidsoap --check /etc/liquidsoap/script.liq```
)
before effectively restarting the daemon.

Liquidsoap

Liquidsoap is a powerful tool for building complex audio and video stream generators,
typically targeting internet radios and webtvs. It consists of a simple script language,
which has a first-class notion of source (basically a stream) and
provides elementary source constructors and source compositions
from which you can build the stream generator you want.
This design makes liquidsoap flexible and easily extensible.

We believe that liquidsoap is easy to use. For basic purposes, the scripts
consist of the definition of a tree of sources.
You will quickly learn
how natural it is to use liquidsoap in such cases. The good thing is that
when you’ll want to make your stream more complex,
you’ll be able to stay in the same framework and keep a maintainable
configuration.
Of course, using some complex features might require a deeper
understanding of the concepts of source and
request and of our scripting language.

We’ll discuss below what liquidsoap is and what it isn’t.
If you’re already familiar with it and want to get started,
just jump to the documentation index.
It will provide guidance,starting with the quickstart tour.

Liquidsoap is an open-source software
from the Savonet [http://liquidsoap.info] project.

Features

Here are a few things you can easily achieve using Liquidsoap:

	Playing from files, playlists, directories or script playlists (plays the file chosen by an external program).

	Video streams generation.

	Decoding/encoding using any media format supported by FFmpeg.

	Transcoding of media stream, relay of encoded media stream without re-encoding, sharing encoding to avoid encoding multiple times.

	Transparent remote file access; easy addition of file resolution protocols.

	Scheduling of many sources, depending on time, priorities, quotas, etc.

	Mixing sources on top others.

	Queuing of user requests; editable queues.

	Sound processing: compression, normalization, echo, soundtouch, etc.

	Speech and sound synthesis.

	Metadata rewriting and insertion.

	Arbitrary transitions: cross-fade, jingle insertion, custom, etc. The behaviour of the transition can be programmed to depend on metadata and average volume.

	Input of other streams: useful for switching to a live show. Liquidsoap can relay an HTTP stream but also host it.

	Blank detection.

	Definable event handlers on new tracks, new metadata and excessive blank.

	Multiple outputs in the same instance: you can have several quality settings, use several media or even broadcast several contents from the same instance.

	Output to HLS/Icecast/Shoutcast (MP3/Ogg) or a local file (WAV/MP3/Ogg/AAC).

	Input/output via Jack, ALSA, OSS and PortAudio. Output via libao.

	Interactive control of many operators via Telnet or UNIX domain socket, and indirectly using scripts, graphical/web/IRC interfaces.

If you need something else, it’s highly possible that you can have it – at least by programming new sources/operators. Send us a request, we’ll be happy to discuss these questions.

Non-Features

Liquidsoap is a flexible tool for processing audio and video streams, that’s all. We’ve used it for several internet radio projects, and we know its flexibility is useful. However, internet radio usually requires more than just an audio stream, as such components cannot easily be built from basic primitives as we do in liquidsoap for streams. We don’t have any magic solution for these, although we sometimes have some nice tools which could be adapted to various uses.

Liquidsoap itself doesn’t have a nice GUI or any graphical programming environment. You’ll have to write the script by hand, and the only possible interaction with a running liquidsoap is the telnet server.

Liquidsoap doesn’t do any database or website stuff. It won’t index your audio files, it won’t allow your users to score songs on the web, etc. However, liquidsoap makes the interfacing with other tools easy, since it can call an external application (reading from the database) to get audio tracks, another one (updating last-played information) to notify that some file has been successfully played. An example of this is Beets, RadioPi also has a more complex system of its own along these lines.

Installing Liquidsoap

You can install liquidsoap using binary builds, with OPAM or from source.

Binary builds are provided with our releases, either in the form of debian/ubuntu and alpine
packages or as docker images (also for debian or alpine). Your favorite distribution may also have
binary packages.

The binary package and docker images we provide are compiled in two flavors:

	The main liquidsoap packages are compiled with all available features and functions. This is a good starting point for general-purpose development

	Binary packages and docker images labelled -minimal are compiled without the extra libraries and with a limited set of essential optional features

Minimal builds are useful if you are concerned about size or memory usage. They also reduce the chances of running into issues that could be introduced
by optional dependencies that you do not use. If your script works with them, they are recommended over the fully featured builds for production.

Each binary build that we provide have a corresponding *.config file. This is a text file that lists all the features included in a specific
build. You can consult it to know what features are available. You can also get the same information by calling liquidsoap --build-config, for instance
when using a docker image.

Binary packages and docker images are useful in that they provide a readily available liquidsoap installation. If you
need more finer-grained build or if your distribution/OS does not have a binary build, you can
install via OPAM, which is a very convenient package manager that can compile liquidsoap from sources
and knows how to handle external dependencies for most OS/distributions.

Lastly, compiling from source should be reserved to developers.

	Debian/Ubuntu

	Alpine

	Docker

	Windows

	Using OPAM

	From source

Debian/Ubuntu

We generate debian and ubuntu packages automatically as part of our release process [https://github.com/savonet/liquidsoap/releases]. Otherwise, you
can check out the official debian [https://packages.debian.org/liquidsoap] and ubuntu [https://packages.ubuntu.com/liquidsoap] packages.

Alpine

Alpine packages are also provided as part of our release process [https://github.com/savonet/liquidsoap/releases].

Docker

We provide production-ready docker images via Docker hub [https://hub.docker.com/r/savonet/liquidsoap].
Docker images are tagged with a release tag (e.g. v2.1.4) and with the sha of their git commit (e.g. a24bf49). Please note
that images tagged with a release tag may change while images tagged with a commit sha will not.

Windows

You can download a liquidsoap for windows from our release page [https://github.com/savonet/liquidsoap/releases].

Install using OPAM

The recommended method to install liquidsoap from source is by using the OCaml Package
Manager [http://opam.ocaml.org/]. OPAM is available in all major distributions
and on windows. We actively support the liquidsoap packages there and its
dependencies. You can read here [https://opam.ocaml.org/doc/Usage.html] about
how to use OPAM. In order to use it:

	you should have at least OPAM version 2.1 [https://opam.ocaml.org/doc/Install.html],

	not all version of the OCaml compiler are supported. You can run opam info liquidsoap to find out.

You can create a switch for a specific OCaml version as follows:

opam switch create <ocaml version>

A typical installation with most expected features is done by executing:

opam install ffmpeg liquidsoap

This will install liquidsoap along with the optional ffmpeg package, which provides most
of the expected functionalities (encoding, decoding, metadata support etc) out of the box.

The opam installer also handles external dependencies that is, dependencies from your operating system
that are required for your install. Typically, this would be the ffmpeg shared libraries here, as well
as libcurl, which is required for liquidsoap to install.

In most cases, opam will simply ask for your permission to install these dependencies on your behalf. In
some cases, however, you will have install them yourself.

Most of liquidsoap’s dependencies are only optional. For
instance, if you want to enable opus encoding and decoding after you’ve already
installed liquidsoap, you should execute the following:

opam install opus

This will install opus and its dependencies and recompile liquidsoap to take advantage of it.

opam info liquidsoap should give you the list of all optional dependencies
that you may enable in liquidsoap.

Installing from source

See the build instructions

Importing JSON values

Note: If you are reading this page for the first time, you might want to skip directly to the
explicit type annotation below as this is the recommended way of parsing JSON data. The content
before that is here to explain the inner workings of JSON parsing in liquidsoap.

Liquidsoap supports importing JSON values through a special let syntax. Using this syntax
makes it relatively natural to parse JSON data in your script while keeping type-safety at runtime.
Here’s an example:

let json.parse v = '{"foo": "abc"}'

print("We parsed a JSON object and got value " ^ v.foo ^ " for attribute foo!")

This prints:

We parsed a JSON object and got value abc for attribute foo!

What happened here is that liquidsoap kept track of the fact that v was called with
v.foo and that the result of that was a string. Then, at runtime, it checks the parsed
JSON value against this type and raises an issue if that did not match. For instance,
the following script:

let json.parse v = '{"foo": 123}'

print("We parsed a JSON object and got value " ^ v.foo ^ " for attribute foo!")

raises the following exception:

Error 14: Uncaught runtime error:
type: json,
message: "Parsing error: json value cannot be parsed as type {foo: string, _}"

Of course, this all seems pretty trivial presented like that but, let’s switch to reading a file instead:

let json.parse v = file.contents("/path/to/file.json")

print("We parsed a JSON object and got value " ^ v.foo ^ " for attribute foo!")

Now, this is getting somewhere! Let’s push it further and parse a whole package.json from
a typical npm package:

Content of package.json is:
{
"name": "my_package",
"version": "1.0.0",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
},
...
let json.parse package = file.contents("/path/to/package.json")

name = package.name
version = package.version
test = package.scripts.test

print("This is package " ^ name ^ ", version " ^ version ^ " with test script: " ^ test)

And we get:

This is package my_package, version 1.0.0 with test script: echo "Error: no test specified" && exit 1

This can even be combined with patterns:

let json.parse {
 name,
 version,
 scripts = {
 test
 }
} = file.contents("/path/to/package.json")

print("This is package " ^ name ^ ", version " ^ version ^ " with test script: " ^ test)

Now, this is looking nice!

Explicit type annotation

Explicit type annotation are the recommended way to parse JSON data.

Let’s try a slight variation of the previous script now:

let json.parse {
 name,
 version,
 scripts = {
 test
 }
} = file.contents("/path/to/package.json")

print("This is package #{name}, version #{version} with test script: #{test}")

This returns:

This is package null, version null with test script: null

What? 🤔

This is because, in this script, we only use name, version, etc.. through the interpolation syntax #{...}. However, interpolated
variables can be anything so this does not leave enough information to the typing system to know what type those variables should be and,
in this case, we default to null.

In order to avoid bad surprises like this, it is usually recommended to add type annotations to your json parsing call
to explicitly state what kind of data you are expecting. Let’s add one here:

let json.parse ({
 name,
 version,
 scripts = {
 test
 }
} : {
 name: string,
 version: string,
 scripts: {
 test: string
 }
}) = file.contents("/path/to/package.json")

print("This is package #{name}, version #{version} with test script: #{test}")

And we get:

This is package my_package, version 1.0.0 with test script: echo "Error: no test specified" && exit 1

Back to normal!

Type syntax

The syntax for type annotation is as follows:

Ground types

string, int, float are parsed as, resp., a string, an integer or a floating point number. Note that if your json value contains an integer such as 123, parsing it as a floating point number will succeed. Also, if an integer is too big to be represented as an int internally, it will be parsed as a floating point number.

Nullable types

All type annotation can be postfixed with a trailing ? to denote a nullable value. If a type is nullable, the json parser will return null when it cannot parse
the value as the principal type. This is particularly useful when you are not sure of all the types that you are parsing.

For instance, some npm packages do not have a scripts entry or a test entry, so you would parse them as:

let json.parse ({
 name,
 version,
 scripts,
} : {
 name: string,
 version: string,
 scripts: {
 test: string?
 }?
}) = file.contents("/path/to/package.json")

And, later, inspect the returned value to see if it is in fact present. You can do it in several ways:

Check if the value is defined:
test =
 if null.defined(scripts) then
 null.get(scripts.test)
 else
 null ()
 end

Use the ?? syntax:
test = (scripts ?? { test = null() }).test

Tuple types

The type (int * float * string) tells liquidsoap to parse a JSON array whose first values are of type: int, float and string. If any further values
are present in the array, they will be ignored.

For arrays as well as any other structured types, the special notation _ can be used to denote any type. For instance, (_ * _ * float) denotes an JSON
array whose first 2 elements can be of any type and its third element is a floating point number.

Lists

The type [int] tells liquidsoap to parse a JSON array where all its values are integers as a list of integers. If you are not sure if all elements in the
array are integers, you can always use nullable integers: [int?]

Objects

The type {foo: int} tells liquidsoap to parse a JSON object as a record with an attribute labelled foo whose value is an integer. All other
attributes are ignored.

Arbitrary object keys can be parsed using the following syntax: {"foo bar key" as foo_bar_key: int}, which tells liquidsoap to parse a JSON object
as a record with an attribute labelled foo_bar_key which maps to the attribute "foo bar key" from the JSON object.

Associative lists as objects

It can sometimes be useful to parse a JSON object as an associative list, for instance if you do not know in advance all the possible keys of
an object. In this case, you can use the special type: [(string * int)] as json.object. This tells liquidsoap to parse the JSON object as a list
of pairs (string * int) where string represents the attribute label and int represent the attribute value.

If you are not sure if all the object values are integers you can always use nullable integers: [(string * int?)] as json.object

Parsing errors

When parsing fails, a error.json is raised which can be caught at runtime:

try
 let json.parse ({
 status,
 data = {
 track
 }
 } : {
 status: string,
 data: {
 track: string
 }
 }) = res

 # Do something on success here..
catch err: [error.json] do
 # Do something on parse errors here..
end

Example

Here’s a full example. Feel free to refer to tests/language/json.liq in the source code for more of them.

 data = '{
 "foo": 34.24,
 "gni gno": true,
 "nested": {
 "tuple": [123, 3.14, false],
 "list": [44.0, 55, 66.12],
 "nullable_list": [12.33, 23, "aabb"],
 "object_as_list": {
 "foo": 123,
 "gni": 456.0,
 "gno": 3.14
 },
 "arbitrary object key ✨": true
 },
 "extra": "ignored"
 }'

 let json.parse (x : {
 foo: float,
 "gni gno" as gni_gno: bool,
 nested: {
 tuple: (_ * float),
 list: [float],
 nullable_list: [int?],
 object_as_list: [(string * float)] as json.object,
 "arbitrary object key ✨" as arbitrary_object_key: bool,
 not_present: bool?
 }
 }) = data
 - x : {
 foo = 34.24,
 gni_gno = true,
 nested = {
 tuple = (null, 3.14),
 list = [44., 55., 66.12],
 nullable_list = [null, 23, null],
 object_as_list = [("foo", 123.), ("gni", 456.0), ("gno", 3.14)],
 arbitrary_object_key = true,
 not_present = null
 }
 }

JSON5 extension

Liquidsoap supports the JSON5 [https://json5.org/] extension. Parsing of json5 values is enabled with the following argument:

let json.parse[json5=true] x = ...

If a json5 variable is in scope, you can also simply use let json.parse[json5] x = ...

Exporting JSON values

Exporting JSON values can be done using the json.stringify function:

r = {artist = "Bla", title = "Blo"}
print(json.stringify(r))

Please note that not all values are exportable as JSON, for instance function. In such cases the function will raise an error.json exception.

Generic JSON objects

Generic JSON objects can be manipulated through the json() operator. This operator
returns an opaque json variable with methods to add and remove attributes:

j = json()
j.add("foo", 1)
j.add("bla", "bar")
j.add("baz", 3.14)
j.add("key_with_methods", "value".{method = 123})
j.add("record", { a = 1, b = "ert"})
j.remove("foo")
s = json.stringify(j)
- s: '{ "record": { "b": "ert", "a": 1 }, "key_with_methods": "value", "bla": "bar", "baz": 3.14 }'

LADSPA plugins in Liquidsoap

LADSPA [http://www.ladspa.org/] is a standard that allows software audio processors and effects to be plugged into a
wide range of audio synthesis and recording packages.

If enabled, Liquidsoap supports LADSPA plugins. In this case,
installed plugins are detected at run-time and are all available in Liquidsoap under a name
of the form: ladspa.plugin, for instance ladspa.karaoke, ladspa.flanger etc..

The full list of those operators can be found using liquidsoap --list-plugins.
Also, as usual, liquidsoap -h ladspa.plugin returns a detailed description of each LADSPA’s operators.
For instance:

./liquidsoap -h ladspa.flanger
*** One entry in scripting values:
Flanger by Steve Harris <steve@plugin.org.uk>.
Category: Source / Sound Processing
Type: (?id:string,?delay_base:'a,?feedback:'b,
 ?lfo_frequency:'c,?max_slowdown:'d,
 source(audio='#e,video='#f,midi='#g))->
source(audio='#e,video='#f,midi='#g)
where 'a, 'b, 'c, 'd is either float or ()->float
Flag: hidden
Parameters:
* id : string (default "")
 Force the value of the source ID.
* delay_base : anything that is either float or ()->float (default 6.32499980927)
 Delay base (ms) (0.1 <= delay_base <= 25).
* feedback : anything that is either float or ()->float (default 0.)
 Feedback (-1 <= feedback <= 1).
* lfo_frequency : anything that is either float or ()->float (default 0.334370166063)
 LFO frequency (Hz) (0.05 <= lfo_frequency <= 100).
* max_slowdown : anything that is either float or ()->float (default 2.5)
 Max slowdown (ms) (0 <= max_slowdown <= 10).
* (unlabeled) : source(audio='#e,video='#f,midi='#g) (default None)

For advanced users, it is worth nothing that most of the parameters associated with LADSPA operators
can take a function, for instance in the above: max_slowdown : anything that is either float or ()->float
.
This means that those parameters may be dynamically changed while running a liquidsoap script.

Liquidsoap’s scripting language

The following is adapted from the Liquidsoap book. The reader is avised to check out the whole
chapter in the book for more details about the liquidsoap language

General features

Liquidsoap is a novel language which was designed from scratch to handle media stream. It takes some inspiration
from functional languages such as OCaml [https://ocaml.org/] but features a syntax that is more intuitive to the
general purpose programmer, similar to Ruby or Javascript.

Typing

One of the main features of the language is that it is typed. This means that
every expression belongs to some type which indicates what it is. For instance,
"hello" is a string whereas 23 is an integer, and, when presenting a
construction of the language, we will always indicate the associated
type. Liquidsoap implements a typechecking algorithm which ensures that
whenever a string is expected a string will actually be given, and similarly for
other types. This is done without running the program, so that it does not
depend on some dynamic tests, but is rather enforced by theoretical
considerations. Another distinguishing feature of this algorithm is that it also
performs type inference: you never actually have to write a type, those are
guessed automatically by Liquidsoap. This makes the language very safe, while
remaining very easy to use.

Functional programming

The language is functional, which means that you can very easily define
functions, and that functions can be passed as arguments of other
functions. This might look like a crazy thing at first, but it is actually quite
common in some language communities (such as OCaml). It also might look quite
useless: why should we need such functions when describing webradios? You will
soon discover that it happens to be quite convenient in many places: for
handlers (we can specify the function which describes what to do when some event
occurs such as when a DJ connects to the radio), for transitions (we pass a
function which describes the shape we want for the transition) and so on.

Streams

The unique feature of Liquidsoap is that it allows the manipulation of sources
which are functions which will generate streams. These streams typically consist
of stereo audio data, but we do restrict to this: they can contain audio with
arbitrary number of channels, they can also contain an arbitrary number of video
channels, and also MIDI channels (there is limited support for sound synthesis).

Standard library

Although the core of Liquidsoap is written in OCaml, many of the functions of
Liquidsoap are written in the Liquidsoap language itself. Those are defined in
the stdlib.liq script, which is loaded by default and includes all the
libraries. You should not be frightened to have a look at the standard library,
it is often useful to better grasp the language, learn design patterns and
tricks, and add functionalities. Its location on your system is indicated in the
variable configure.libdir and can be obtained by typing

Basic values

Integers and floats

The integers, such as 3 or 42, are of type
int. Depending on the current architecture of the
computer on which we are executing the script (32 or 64 bits, the latter being
the most common nowadays) they are stored on 31 or 63 bits. The minimal
(resp. maximal) representable integer can be obtained as the constant
min_int
(resp. max_int); typically, on a 64 bits
architecture, they range from -4611686018427387904 to 4611686018427387903.

The floating point numbers, such as 2.45, are of type
float, and are in double precision, meaning that
they are always stored on 64 bits. We always write a decimal point in them,
so that 3 and 3. are not the same thing: the former is an integer and the
latter is a float. This is a source of errors for beginners, but is necessary for
typing to work well.

Strings

Strings are written between double or single quotes,
e.g. "hello!" or 'hello!', and are of type string.

In order to write the character “"” in a string, one cannot simply type “"”
since this is already used to indicate the boundaries of a string: this
character should be escaped, which
means that the character “\” should be typed first so that

print("My name is \"Sam\"!")

will actually display “My name is "Sam"!”. Other commonly used escaped
characters are “\\” for backslash and “\n” for new line. Alternatively, one
can use the single quote notation, so that previous example can also be written
as

print('My name is "Sam"!')

This is most often used when testing JSON data which can contain many quotes or for
command line arguments when calling external scripts. The character “\” can also
be used at the end of the string to break long strings in scripts without
actually inserting newlines in the strings. For instance, the script

print("His name is \
 Romain.")

will actually print

His name is Romain.

Note that there is no line change between “is” and “Romain”, and the indentation
before “Romain” is not shown either.

The concatenation of two strings is achieved by the infix operator “^”, as in

user = "dj"
print("Current user is " ^ user)

Instead of using concatenation, it is often rather convenient to use string
interpolation: in a string, #{e} is replaced by the string representation of
the result of the evaluation of the expression e:

user = "admin"
print("The user #{user} has just logged.")

will print The user admin has just logged. or

print("The number #{random.float()} is random.")

will print The number 0.663455738438 is random. (at least it did last time I
tried).

Escaping strings

Liquidsoap strings follow the most common lexical conventions from C and javascript and JSON, in particular,
string.unescape recognizes the same escape sequences as C (except for UTF-16 characters) and javascript.

The following sequences are recognized:

Escape sequence	Hex value in ASCII	Character represented
—————	——————	————————————————————————————-
\a	\x07	Alert (Beep, Bell)
\b	\x08	Backspace
\e	\x1B	Escape character
\f	\x0C	Formfeed, Page Break
\n	\x0A	Newline (Line Feed)
\r	\x0D	Carriage Return
\t	\x09	Horizontal Tab
\v	\x0B	Vertical Tab
\\	\x5C	Backslash
\/	\x2f	Forward slash
\'	\x27	Apostrophe or single quotation mark
\"	\x22	Double quotation mark
\?	\x3F	Question mark (used to avoid Digraphs and trigraphs)
\nnn	any	The byte whose numerical value is given by nnn interpreted as an octal number
\xhh	any	The byte whose numerical value is given by hh interpreted as a hexadecimal number
\uhhhh	none	UTF8-8 code point given by hhhh interpreted as an hexadecimal number

This convention has been decided to follow the most common practices. In particular, \nnn is an octal escape sequence in most languages
including C, Ruby, Javascript, Python and more. This differs from OCaml where \nnn is considered a digital escape sequence.

These lexical conventions are used in the default string.escape and string.unescape.

Here’s an example of an escaped string:

"\" \t \045 \x2f \u4f32";;
- : string = "\" \t % / 2"

The function string.quote returns JSON-compatible [https://www.json.org/json-en.html] strings.

Regular expressions

This feature was introduced in liquidsoap version 2.1.0

Regular expressions can be created using the regexp operator or the syntactic sugar: r/.../<flags>. For instance:

Using the regexp operator:
r = regexp(flags=["g","i"], "foo([\\w])+bar")

Using the r/../ syntactic sugar:
r = r/foo([\w])bar/gi

Using the r/../ syntactic sugar makes it possible to write regular expressions without having to escape \ characters,
which makes them more easily readable.

Regular expression flags are:

	i: perform case-insensitive match

	g: substitute all matched sub-strings, not just the first one

	s: match all characters, including \n when using the . pattern

	m: ^ and $ match before/after newlines, not just at the beginning/end of a string

Regular expressions have the following methods:

	replace(fn, s): replace matched substrings of s using function fn. If the g flag is not passed, only the first match is replaced otherwise, all matches are replaced

	split(s): split the given string on all substrings matching the regular expression.

	test(s): returns true if the given string matches the regular expression.

	exec(s): execute the regular expression and return a of list matches of the form: [(<match index>, <match>), ..]. Named matches are also supported and returned as property groups of type [string * string]:

r/(foo)(?<gno>gni)?/g.exec("foogni")
- : [int * string].{groups : [string * string]} =
[
 (2, "gni"),
 (1, "foo"),
 (0, "foogni")
].{
 groups = [
 ("gno", "gni")
]
}

Booleans

The booleans are either true or
false and are of type bool. They can be combined
using the usual boolean operations

	and: conjunction,

	or: disjunction,

	not: negation.

Booleans typically originate from comparison operators, which take two values
and return booleans:

	==: compares for equality,

	!=: compares for inequality,

	<=: compares for inequality,

and so on (<, >=, >). For instance, the following is a boolean expression:

(n < 3) and not (s == "hello")

Conditional branchings execute code depending on whether a condition is true
or not. For instance, the code

if (1 <= x and x <= 12) or (not 10h-15h) then
 print("The condition is satisfied")
else
 print("The condition ain't satisfied")
end

will print that the condition is satisfied when either x is between 1 and 12
or the current time is not between 10h and 15h. A conditional branching might
return a value, which is the last computed value in the chosen branch. For
instance,

y = if x < 3 then "A" else "B" end

will assign "A" or "B" to y depending on whether x is below 3 or
not. The two branches of a conditional should always have the same return type:

x = if 1 == 2 then "A" else 5 end

will result in

At line 1, char 19-21:
Error 5: this value has type string
but it should be a subtype of int

meaning that "A" is a string but is expected to be an integer because the
second branch returns an integer, and the two should be of same nature. The
else branch is optional, in which case the then branch should be of type
unit:

if x == "admin" then print("Welcome admin") end

In the case where you want to perform a conditional branching in the
else branch, the elsif{.liquidsoap} keyword should be used, as
in the following example, which assigns 0, 1, 2 or 3 to s depending on whether
x is "a", "b", "c" or something else:

s = if x == "a" then 0
 elsif x == "b" then 1
 elsif x == "c" then 2
 else 3 end

This is equivalent (but shorter to write) to the following sequence of
imbricated conditional branchings:

s = if x == "a" then 0
 else
 if x == "b" then 1
 else
 if x == "c" then 2
 else 3 end
 end
 end

Finally, we should mention that the notation c?a:b is also available as a
shorthand for if c then a else b end, so that the expression

y = if x < 3 then "A" else "B" end

can be shortened to

y = (x<3)?"A":"B"

(and people will think that you are a cool guy).

Time predicates

Time predicates are special boolean values such as {0h-7h}. These values are
true or false depending on the current time. Some examples of time
predicates are

{11h15-13h} between 11h15 and 13h
{12h} between 12h00 and 12h59
{12h00} at 12h00
{00m} on the first minute of every hour
{00m-09m} on the first 10 minutes of every hour
{2w} on Tuesday
{6w-7w} on weekends

Above, w stands for weekday: 1 is Monday, 2 is Tuesday, and so on. Sunday is
both 0 and 7.

Time predicate can also be parsed at runtime, for instance if you want to create
them dynamically. The syntax is:

f = time.predicate("00m-30m");;
f : () -> bool = <fun>

Be aware that, if parsing fails, it will raise error.string:

f = time.predicate("foo")
Error 14: Uncaught runtime error:
type: string, message: "Failed to parse foo as time predicate"

Unit

Some functions, such as print, do not return a meaningful value: we are
interested in what they are doing (e.g. printing on the standard output) and not
in their result. However, since typing requires that everything returns
something of some type, there is a particular type for the return of such
functions: unit. Just as there are only two values in the booleans (true and
false), there is only one value in the unit type, which is written (). This
value can be thought of as the result of the expression saying “I’m done”.

Lists

Some more elaborate values can be constructed by combining the previous ones. A
first kind is lists which are finite sequences of values, being all of the
same type. They are constructed by square bracketing the sequence whose elements
are separated by commas. For instance, the list

[1, 4, 5]

is a list of three integers (1, 4 and 5), and its type is [int], and the type
of ["A", "B"] would obviously be [string]. Note that a list can
be empty: [].

You can extract list elements through splats such as

l = [1, 5, 7, 8, 9]
let [x, _, z, ...t] = l

In this example, the value of x is 1, the value of z is 7 and the value of t
is [8, 9].

You can also combine lists in a similar way

x = [1, ...[2, 3, 4], 5, ...[6, 7]]

In this example, the value of x is [1, 2, 3, 4, 5, 6 ,7]

Tuples

Another construction present in Liquidsoap is tuples of values, which are
finite sequences of values which, contrarily to lists, might have different
types. For instance,

(3, 4.2, "hello")

is a triple (a tuple with three elements) of type

int * float * string

which indicate that the first element is an integer, the second a float and the
third a string.

Similarly to lists, there is a special syntax in order to access
tuple elements. For instance, if t is the above tuple (3, 4.2, "hello"), we can write

let (n, x, s) = t

which will assign the first element to the variable n, the second element to
the variable x and the third element to the variable s.

Programming primitives

Variables

We have already seen many examples of uses of variables: we use

x = e

in order to assign the result of evaluating an expression e to a
variable x, which can later on be referred to as x. Variables can be masked:
we can define two variables with the same name, and at any point in the program the
last defined value for the variable is used:

n = 3
print(n)
n = n + 2
print(n)

will print 3 and 5. Contrarily to most languages, the value for a variable
cannot be changed (unless we explicitly require this by using references, see
below), so the above program does not modify the value of n, it is simply that
a new n is defined.

There is an alternative syntax for declaring variables which is

def x =
 e
end

It has the advantage that the expression e can spread over multiple lines and
thus consist of multiple expressions, in which case the value of the last one
will be assigned to x. This is particularly useful to use local variables when defining a value.

References

As indicated above, by default, the value of a variable cannot be
changed. However, one can use a reference in order to be able to do this.
Those can be seen as memory cells, containing values of a given fixed type,
which can be modified during the execution of the program. They are created with
the ref keyword, with the initial value of the cell as argument. For instance,

r = ref(5)

declares that r is a reference which contains 5 as initial value. Since 5
is an integer (of type int), the type of the reference r will be

ref(int)

meaning that its a memory cell containing integers. On such a reference, two
operations are available.

	One can obtain the value of the reference by applying the reference to (),
so that r() denotes the value contained in the reference r, for instance

x = r() + 4

declares the variable x as being 9 (which is 5+4).

	One can change the value of the reference by using the := keyword, e.g.

r := 2

will assign the value 2 to r. Internally, this is done by calling the set
method of the reference, so that the above is equivalent to writing

r.set(2)

which used to be the syntax for some reference manipulations.

Loops

The usual looping constructions are available in Liquidsoap. The for loop
repeatedly executes a portion of code with an integer variable varying between
two bounds, being increased by one each time. For instance, the following code
will print the integers 1, 2, 3, 4 and 5, which are the values
successively taken by the variable i:

for i = 1 to 5 do
 print(i)
end

In practice, such loops could be used to add a bunch of numbered files
(e.g. music1.mp3, music2.mp3, music3.mp3, etc.) in a request queue for
instance.

The while loop repeatedly executes a portion of code, as long a condition is
satisfied. For instance, the following code doubles the contents of the
reference n as long as its value is below 10:

n = ref(1)
while n() < 10 do
 n := n() * 2
end
print(n())

The variable n will thus successively take the values 1, 2, 4, 8 and
16, at which point the looping condition n() < 10 is not satisfied anymore
and the loop is exited. The printed value is thus 16.

Functions

Liquidsoap is built around the notion of function: most operations are performed
by those. For some reason, we sometimes call operators the functions acting on
sources. Liquidsoap includes a standard library which consists of functions
defined in the Liquidsoap language, including fairly complex operators such as
playlist which plays a playlist or crossfade which takes care of fading
between songs.

Basics

A function is a construction which takes a bunch of arguments and produces a
result. For instance, we can define a function f taking two float arguments,
prints the first and returns the result of adding twice the first to the second:

def f(x, y)
 print(x)
 2*x+y
end

This function can also be written on one line if we use semicolons (;) to
separate the instructions instead of changing line:

def f(x, y) = print(x); 2*x+y end

The type of this function is

(int, int) -> int

The arrow -> means that it is a function, on the left are the types of the
arguments (here, two arguments of type int) and on the right is the type of
the returned value of the function (here, int). In order to use this function,
we have to apply it to arguments, as in

f(3, 4)

This will trigger the evaluation of the function, where the argument x
(resp. y) is replaced by 3 (resp. 4), i.e., it will print 3 and return
the evaluation of 2*3+4, which is 10.

Anonymous functions

For concision in scripts, it is possible define a function without giving it a
name, using the syntax

fun (x) -> ...

This is called an anonymous function, and it is typically used in order to
specify short handlers in arguments.

Anonymous function with no arguments

You will see that it is quite common to use anonymous functions with no
arguments. For this reason, we have introduced a special convenient syntax for
those and allow writing

{...}

instead of

fun () -> ...

Labeled arguments

A function can have an arbitrary number of arguments, and when there are many of them it
becomes difficult to keep track of their order and their order matter! For
instance, the following function computes the sample rate given a number of
samples in a given period of time:

def samplerate(samples, duration) = samples / duration end

which is of type

(float, float) -> float

For instance, if you have 110250 samples over 2.5 seconds the samplerate will be
samplerate(110250., 2.5) which is 44100. However, if you mix the
order of the arguments and type samplerate(2.5, 110250.), you
will get quite a different result and this will not be detected by
the typing system because both arguments have the same type. Fortunately, we can
give labels to arguments in order to prevent this, which forces explicitly
naming the arguments. This is indicated by prefixing the arguments with a tilde
“~”:

def samplerate(~samples, ~duration) = samples / duration end

The labels will be indicated as follows in the type:

(samples : float, duration : float) -> float

Namely, in the above type, we read that the argument labeled samples is a
float and similarly for the one labeled duration. For those arguments, we have
to give the name of the argument when calling the function:

samplerate(samples=110250., duration=2.5)

The nice byproduct is that the order of the arguments does not matter anymore, the
following will give the same result:

samplerate(duration=2.5, samples=110250.)

Of course, a function can have both labeled and non-labeled arguments.

Optional arguments

Another useful feature is that we can give default values to arguments, which
thus become optional: if, when calling the function, a value is not specified
for such arguments, the default value will be used. For instance, if for some
reason we tend to generally measure samples over a period of 2.5 seconds, we can
make this become the value for the duration parameter:

In this way, if we do not specify a value for the duration, its value will
implicitly be assumed to be 2.5, so that the expression:

samplerate(samples=110250.)

will still evaluate to 44100. Of course, if we want to use another value for the
duration, we can still specify it, in which case the default value will be
ignored:

samplerate(samples=132300., duration=3.)

The presence of an optional argument is indicated in the type by prefixing the
corresponding label with “?”, so that the type of the above function is

(samples : float, ?duration : float) -> float

Getters

We often want to be able to dynamically modify some parameters in a script. For
instance, consider the operator amplify, which takes a float and an audio
source and returns the audio amplified by the given volume factor: we can expect
its type to be

(float, source('a)) -> source('a)

so that we can use it to have a radio consisting of a microphone input amplified
by a factor 1.2 by

mic = input.alsa()
radio = amplify(1.2, mic)

In the above example, the volume 1.2 was supposedly chosen because the sound
delivered by the microphone is not loud enough, but this loudness can vary from
time to time, depending on the speaker for instance, and we would like to be
able to dynamically update it. The problem with the current operator is that the
volume is of type float and a float cannot change over time: it has a fixed
value.

In order for the volume to have the possibility to vary over time, instead of
having a float argument for amplify, we have decided to have instead an
argument of type

() -> float

This is a function which takes no argument and returns a float (remember that a
function can take an arbitrary number of arguments, which includes zero arguments). It is
very close to a float excepting that each time it is called the returned value
can change: we now have the possibility of having something like a float which
varies over time. We like to call such a function a float getter, since it can
be seen as some kind of object on which the only operation we can perform is get
the value. For instance, we can define a float getter by

n = ref(0.)
def f ()
 n := n() + 1.
 n()
end

Each time we call f, by writing f() in our script, the resulting float
will be increased by one compared to the previous one: if we try it in an
interactive session, we obtain

f();;
- : float = 1.0
f();;
- : float = 2.0
f();;
- : float = 3.0

Since defining such arguments often involves expressions of the form

fun () -> e

which is somewhat heavy, we have introduced the alternative syntax

{e}

for it.

Finally, in order to simplify things a bit, you will see that the type of
amplify is actually

({float}, source('a)) -> source('a)

where the type {float} means that both float and () -> float are accepted,
so that you can still write constant floats where float getters are
expected. What we actually call a getter is generally an element of such a
type, which is either a constant or a function with no argument.

In order to work with such types, the standard library often uses the following
functions:

	getter, of type ({'a}) -> {'a}, creates a getter,

	getter.get, of type ({'a}) -> 'a, retrieves the current value of a getter,

	getter.function, of type ({'a}) -> () -> 'a, creates a function from a
getter.

Recursive functions

Liquidsoap supports functions which are recursive, i.e., that can call
themselves. For instance, in mathematics, the factorial function on natural
numbers is defined as fact(n)=1×2×3×…×n, but it can also be defined
recursively as the function such that fact(0)=1 and fact(n)=n×fact(n-1) when
n>0: you can easily check by hand that the two functions agree on small values
of n (and prove that they agree on all values of n). This last formulation has
the advantage of immediately translating to the following implementation of
factorial:

def rec fact(n) =
 if n == 0 then 1
 else n * fact(n-1) end
end

for which you can check that fact(5) gives 120, the expected result. As
another example, the list.length function, which computes the length of a
list, can be programmed in the following way in Liquidsoap:

def rec length(l)
 if l == [] then 0
 else 1 + length(list.tl(l)) end
end

We do not detail much further this trait since it is unlikely to be used for
radios, but you can see a few occurrences of it in the standard library.

Records and modules

Records

Suppose that we want to store and manipulate structured data. For instance, a
list of songs together with their duration and tempo. One way to store each song
is as a tuple of type string * float * float, but there is a risk of confusion
between the duration and the length which are both floats, and the situation
would of course be worse if there were more fields. In order to overcome this,
one can use a record which is basically the same as a tuple, excepting that
fields are named. In our case, we can store a song as

song = { filename = "song.mp3", duration = 257., bpm = 132. }

which is a record with three fields respectively named filename, duration
and bpm. The type of such a record is

{filename : string, duration : float, bpm : float}

which indicates the fields and their respective type. In order to access a field
of a record, we can use the syntax record.field. For instance, we can print
the duration with

print("The duration of the song is #{song.duration} seconds")

Records can be re-used using spreads:

song = { filename = "song.mp3", duration = 257., bpm = 132. }

This is a fresh value with all the fields from `song` and
a new `id` field:
song_with_id = { id = 1234, ...song }

Alternatively, you can also extend a record using the explicit v.{...} syntax:

song = { filename = "song.mp3", duration = 257., bpm = 132. }

This is a fresh value with all the fields from `song` and
a new `id` field:
song_with_id = song.{id = 1234}

Modules

Records are heavily used in Liquidsoap in order to structure the functions of
the standard library. We tend to call module a record with only functions, but
this is really the same as a record. For instance, all the functions related to
lists are in the list module and functions such as list.hd are fields of
this record. For this reason, the def construction allows adding
fields in record. For instance, the definition

def list.last(l)
 list.nth(l, list.length(l)-1)
end

adds, in the module list, a new field named last, which is a function which
computes the last element of a list. Another shorter syntax to perform
definitions consists in using the let keyword which allows assigning a value
to a field, so that the previous example can be rewritten as

let list.last = fun(l) -> list.nth(l, list.length(l)-1)

If you often use the functions of a specific module, the open keyword allows
using its fields without having to prefix them by the module name. For instance,
in the following example

l = [1,2,3]
open list
x = nth(l, length(l)-1)

the open list directive allows directly using the functions in this module: we
can simply write nth and length instead of list.nth and list.length.

Values with fields

A unique feature of the Liquidsoap language is that it allows adding fields to
any value. We also call them methods by analogy with object-oriented
programming. For instance, we can write

song = "test.mp3".{duration = 123., bpm = 120.}

which defines a string ("test.mp3") with two methods (duration and
bpm). This value has type

string.{duration : float, bpm : float}

and behaves like a string, e.g. we can concatenate it with other strings:

print("the song is " ^ song)

but we can also invoke its methods like a record or a module:

print("the duration is #{song.duration}")

The construction def replaces allows changing the main value
while keeping the methods unchanged, so that

def replaces song = "newfile.mp3" end
print(song)

will print

"newfile.mp3".{duration = 123., bpm = 120.}

(note that the string is modified but not the fields duration and bpm).

Optional fields

During the execution of your script, it can be useful to allow functions
to receive records that may or may not have a specific field. This can
be used, for instance, to model optional arguments.

This can be achieved in two ways:

	Using the x.foo ?? default syntax

Here’s an example:

This functions adds 1 to x unless options has a
add field in which case it adds this value
def f(x, options) =
 x + (options.add ?? 1)
end

The type of this function is:

f : (int, 'a.{add? : int}) -> int = <fun>

which denotes that the options argument can be any value that may or may not have
a add field. However, if this field is present, it must be of type int.

	Using the x?.foo syntax

Given a variable x, x?.foo returns the field value foo, if present, or null
otherwise.

The ?. syntax can be chained and works with functions, which make it a very convenient
way to drill deep inside nested records:

x?.fn(123, "aabb")?.field

Patterns

As explained earlier, you can use several constructions to extract data from structured values such
as let [x, y] = l and etc. These constructions are called patterns.

Patterns allows to quickly access values nested deeply inside structured data in a way that remains pretty intuitive when
reading the code.

Patterns are constructed using variable placeholders, which are either a variable name such as: x, foo, etc. or
the special symbol _ for any ignored value.

Tuple patterns

Tuple patterns are pretty straight forward and consist of any sequence of variable captures:

let (x, y, _, z) = (123, "aabbcc", true, 3.14)
x = 1, y = "aabbcc", z = 3.14

List patterns

List patterns are composed of variable placeholders, etc. and spreads of the form:
...<variable placeholder> such as: ...z. The spread ..._
can be simply written See below for an example.

You can use any combination of:

	Forward variable names: these capture the first elements of the list.

	One spread: this captures any remaining element as a list.

	Backward variable names: these capture the last elements of a the list.

Here are some examples:

Forward capture:
let [x, y, z] = [1, 2, 3]
x = 1, y = 2, z = 3

Forward capture with spread:
let [x, y, ...z] = [1, 2, 3, 4]
x = 1, y = 2, z = [3, 4]

Forward capture with ignored values:
let [_, x, ...z] = [1, 2, 3, 4]
x = 2, z = [3, 4]

Full capture:
let [x, y, ...z, t, u, v] = [1, 2, 3, 4, 5, 6, 7, 8, 9]
x = 1, y = 2, z = [3, 4, 5, 6, 7], t = 7, u = 8, v = 9

Backward capture only.
let [..., t, u, v] = [1, 2, 3, 4, 5]
t = 3, u = 4, v = 5

Record and module patterns

Record and module patterns consist of either variable names (not variable capture!), which capture method values
or variable names with an associated pattern.

Record patterns are of the form: {<captured methods>} while module patterns are of the form: <variable capture>.{<captured methods>}

Here are some examples:

Record capture
let {foo, bar} = {foo = 123, bar = "baz", gni = true}
foo = 123, bar = "baz"

Record capture with spread
let {foo, bar, ...x} = {foo = 123, bar = "baz", gni = true}
foo = 123, bar = "baz", x = {gni = true}

Module capture
let v.{foo, bar} = "aabbcc".{foo = 123, bar = "baz", gni = true}
v = "aabbcc", foo = 123, bar = "baz"

Module capture with ignored value
let _.{foo, bar} = "aabbcc".{foo = 123, bar = "baz", gni = true}
foo = 123, bar = "baz"

Record capture with sub-patterns. Same works for module!
let {foo = [x, y, z], gni} = {foo = [1, 2, 3], gni = "baz"}
foo = [1, 2, 3], x = 1, y = 2, z = 3, gni = "baz"

Combining patterns

As seen with record and modules, patterns can be combined at will, for instance, these
are all valid patterns:

let [{foo}, {gni}, ..., {baz}] = l

let (_.{ bla = [..., z] }, t, _, u) = x

Advanced values

In this section, we detail some more advanced values than the ones presented in. You are not expected to be understanding
those in details for basic uses of Liquidsoap.

Errors

In the case where a function does not have a sensible result to return, it can raise an
error. Typically, if we try to take the head of the empty list without
specifying a default value (with the optional parameter default), an error will be raised.
By default, this error will stop the script, which is usually not a desirable
behavior. For instance, if you try to run a script containing

list.hd([])

the program will exit printing

Error 14: Uncaught runtime error:
type: not_found, message: "no default value for list.hd"

This means that the error named “not_found” was raised, with a message
explaining that the function did not have a reasonable default value of the head
to provide.

In order to avoid this, one can catch exceptions with the syntax

try
 code
catch err do
 handler
end

This will execute the instructions code: if an error is raised at some point
during this, the code handler is executed, with err being the error. For
instance, instead of writing

l = []
x = list.hd(default=0, l)

we could equivalently write

l = []
x =
 try
 list.hd(l)
 catch err do
 0
 end

The name and message associated to an error can respectively be retrieved using
the error kind and message attributes, e.g. we can write

try
 ...
catch err do
 print("the error #{err.kind} was raised")
 print("the error message is #{err.message}")
end

Typically, when reading from or writing to a file, errors will be raised when a
problem occurs (such as reading from a non-existent file or writing a file in a
non-existent directory) and one should always check for those and log the
corresponding message:

data = "bla"
try
 file.write(data=data, "/non/existent/path")
catch err do
 log.important("Could not write to file: #{error.message(err)}")
end

Specific errors can be caught with the syntax

try
 ...
catch err : l do
 ...
end

where l is a list of error names that we want to handle here.

Errors can be raised from Liquidsoap with the function error.raise, which
takes as arguments the error to raise and the error message. For instance:

error.raise(error.not_found, "we could not find your result")

Finally, we should mention that all the errors should be declared in advance
with the function error.register, which takes as argument the name of the new
error to register:

myerr = error.register("my_error")
error.raise(myerr, "testing my own error")

Nullable values

It is sometimes useful to have a default value for a type. In Liquidsoap, there
is a special value for this, which is called null. Given a type t, we write
t? for the type of values which can be either of type t or be null: such a
value is said to be nullable. For instance, we could redefine the list.hd
function in order to return null (instead of raising an error) when the list is
empty:

def list.hd(l)
 if l == [] then null() else list.hd(l) end
end

whose type would be

(['a]) -> 'a?

since it takes as argument a list whose elements are of type 'a and returns a
list whose elements are 'a or null. As it can be observed above, the null
value is created with null().

In order to use a nullable value, one typically uses the construction x ?? d
which is the value x excepting when it is null, in which case it is the
default value d. For instance, with the above head function:

x = list.hd(l)
print("the head is " ^ (x ?? "not defined"))

Some other useful functions include

	null.defined: test whether a value is null or not,

	null.get: obtain the value of a nullable value supposed to be distinct from null,

	null.case: execute a function or another, depending on whether a value is
null or not.

Runtime evaluation of scripting values

Similarly to how JSON is parsed, you can evaluate string into values at runtime
using the eval decorator. As with JSON, too, the recommended way to use it is by adding an
explicit type annotation:

let eval (x: {foo: int, bla: string}) = "{foo = 123, bla = \"gni\"}"
print("x.foo = #{x.foo}, x.bla = #{x.bla}")

Including other files

It is often useful to split your script over multiple files, either because it
has become quite large, or because you want to be able to reuse common functions
between different scripts. You can include a file file.liq in a script by
writing

%include "file.liq"

which will be evaluated as if you had pasted the contents of the file in place
of the command.

For instance, this is useful in order to store passwords out of the main file, in
order to avoid risking leaking those when handing the script to some other
people. Typically, one would have a file passwords.liq defining the passwords
in variables, e.g.

radio_pass = "secretpassword"

and would then use it by including it:

%include "passwords.liq"

radio = ...
output.icecast(%mp3, host="localhost", port=8000,
 password=radio_pass, mount="my-radio.mp3", radio)

so that passwords are not shown in the main script.

Code comments

Comments can be added to your code in two ways:

Multi-line comments are comments that can span multiple lines. They are delimitated
by the sequence of characters #< at the beginning and ># at the end. Anything
in between those two sequences is considered code comment.

Here are some examples:

Simple multiline comments:

#< This is a comment >#

Multiline comments can be nested:

#<
This is a top-level comment

 # This is also a comment

 #<
 This is a nested code comment
 >#
>#

Fancy looking multiline comment

#<------- BEGIN CODE COMMENT ----#
Comments can also look like this
#--------- END CODE COMMENT ----->#

Single-line comments are comments that are limited to the current line. Such comments
are started with the character # without a following <. Anything after the initial
character and until the end of the line is considered code comment:

def f(x) = # This is a single line comment.
 123
end

Controlling memory usage

When using liquidsoap in production, it can be important to understand how to control the memory footprint of the application.
This is not an easy topic as there are several layers of memory management inside the application and also some
trade-off considerations between memory footprint and CPU usage.

As of writing (version 2.2.0), some of the trade-off that we are making with the OCaml garbage collector do not seem
satisfactory in some memory-intensive conditions. Hopefully, this will improve in future major release (2.3.x and later).

But first, let’s look at what’s going on.

The OCaml memory model

The OCaml compiler provides a garbage collector. This module is able to track memory blocks used by the OCaml program and free
them when they are not used without the programmer’s intervention.

This is done by scanning the memory currently allocated by the OCaml program to identify the memory blocks that are not in
use anymore. While this is transparent to the user (you!), this also means that there will be extra CPU cycles dedicated to
this operation.

How often these cycle occur help controlling the growth of unused memory but with the understanding that to minimize unused memory,
more CPU cycles have to be dedicated to tracking it.

You can find more information about the OCaml garbage collection on this page [https://ocaml.org/docs/garbage-collection].

Inside liquidsoap scripts, the operations that the OCaml compiler provides to control the garbage collector are available within the
runtime.gc module. The documentation for these operations can be found in the OCaml Gc module documentation [https://v2.ocaml.org/api/Gc.html].

Typically, to change the garbage collector parameters, one can do:

This code was contributed by AzuraCast:
Possible settings:
- less memory: space_overhead = 20
- less cpu: space_overhead = 140
- balanced: space_overhead = 80

Optimize for memory usage over CPU
This results in a slightly increased
CPU usage and reduced memory usage.
runtime.gc.set(runtime.gc.get().{
 space_overhead = 20,
 allocation_policy = 2
})

These parameters and functions make it possible to experiment and see if you can find better parameters for your application.

C memory allocations

Not all the memory in the application is allocated by the OCaml garbage collector. External libraries such as ffmpeg, libmp3lame
and etc. need to allocate their own memory. This is usually referred to as C memory allocations though it does not have
to be allocated by a program written in C.. Another, more technically appropriate is heap memory though, dynamically memory allocated
by the OCaml garbage collector also lives in the program’s heap.. 😅

This type of memory is also cleaned up by the OCaml garbage collector. To do so, a custom block is passed to the OCaml program with
a reference to a C memory pointer and how to clean it up. When the OCaml program detects that this custom block is no longer
in use, it triggers the required operations to clean its corresponding C memory.

However, things get complicated when considering how to fine-tune the garbage collector to account for memory allocated on
the C side..

Remember that, as we discussed in the previous section, the garbage collector has to consume CPU cycles to free up memory. And, in the case of memory allocated on the
C side, a single OCaml value (usually a small amount of memory) can actually refer to a much larger amount of C memory. This
is typically the case when the corresponding C memory represents decoded video frames, which is usually a fairly large amount of memory.

In general, the trade-off is: if the garbage collector does not run often enough, a lot of these rather larger C memory blocks are lingering
longer, which leads to potentially huge amount of memory needlessly consumed by the application.

Conversely, if the garbage collector runs too often, memory usage is controlled but CPU usage is increased.

As of now, the strategy implemented by the OCaml compiler consists in tracking the ratio of OCaml held memory vs. its corresponding C memory and running the garbage collector
more often when this ratio increases. However, this is not optimal in cases where the application purposefully holds large amount
of C memory such as when doing video processing.

In the future, we would like to explore tightening up our control of this mechanism. It should be possible trick the garbage collector
by not declaring the full anmount of allocated C memory to make it possible to run the memory cleaning operations on purpose and at specific times,
typically after a streaming cycle has ended.

Most of the tools for that are already exported in the scripting language so, we will make sure to report our progress on the blog [https://liquidsoap.info/blog]
for anyone to test it.

Audio data format

Another source of memory usage is the audio data format. By default, we store audio data using OCaml’s native floating point numbers in order to be able to run the application,
including audio processing (crossfade, filters, fades etc) at the best possible speed and CPU usage. However, OCaml’s native float are stored using 64 bits (8 bytes), which is a large
amount of memory per number.

If you are concerned with reducing your audio memory footprint, for instance if your applications has a lot of audio sources with buffers, you can
do a couple of things:

	Use the ffmpeg raw content.

This means storing all the audio content as ffmpeg audio frames. This is an opaque format that works very well if your script can use ffmpeg end-to-end, for instance processing
audio using ffmpeg filters..

	Use one of the pcm_f32 or pcm_s16 audio format.

These formats are less opaque. Their data is stored in a C memory array and can be accessed by the OCaml program. Some, but not all, of our operators
do support them transparently. When using pcm_s16, audio samples are stored as 16 bit signed integers (2 bytes, the audio CD format). When using pcm_f32, audio samples are stored as
32 bit float (4 bytes). 16 bit signed integers is probably enough for most applications and consumes 4 times less memory than OCaml’s native floating point numbers.

The pcm_* formats can be required by the encoders by adding pcm_s16 or pcm_f32 to their list of parameters. This will, in turn, inform all operators
and decoders to operate with this format, if they support it:

Mp3 encoder, pcm_s16
encoder = %mp3(pcm_s16, channels=2)

Ogg/opus encoder, pcm_f32
encoder = %ogg(%vorbis(pcm_f32))

FFmpeg AAC encoder, pcm_s16
encoder = %ffmpeg(format="mp4",%audio(pcm_s16, codec="aac"))

For both pcm_* and ffmpeg raw formats, you can use also conversion functions (ffmpeg.raw.decode.*, ffmpeg.raw.encode.*, audio.decode.pcm_*, audio.encode.pcm_*) to convert
content back and forth.

In general, working with the pcm_* formats is easier. If you know what you are doing, though, working with raw FFmpeg frames can also have some advantages. In both cases,
there might be an increase in CPU usage if your script needs to process audio (for instance via a crossfade) when converting these formats back and forth.

Finally, if you need to store large amount of audio data, for instance to create a one hour delay, you should consider using the track.audio.defer operator which was designed for
this purpose.

jemalloc

Lastly, the user-land memory allocator jemalloc [https://github.com/jemalloc/jemalloc] can be used to control all memory allocations (C and OCaml). This allocator is particularly
good at preventing memory fragmentation, which is an important topic for an application like liquidsoap running short streaming cycle involving small amount of memory (FFmpeg frames etc).

The allocator is enabled by installing the jemalloc opam package and is included in all our production builds (except windows). It also comes with a lot of customization options
that are exported via the runtime.jemalloc.* [https://www.liquidsoap.info/doc-dev/reference.html#runtime.jemalloc.epoch] functions.

If you want to explore more, we recommend reading about it [https://engineering.fb.com/2011/01/03/core-data/scalable-memory-allocation-using-jemalloc/] and
then exploring the manual page [http://jemalloc.net/jemalloc.3.html] which contains details about all the available settings.

Customize metadata using Liquidsoap

Liquidsoap has several mechanism for manipulating the metadata attached to your
stream. In this page we quickly detail and compare the different operators, see
the language reference for full details about them.

Warning. The protocol used by Shoutcast and Icecast before version 2 does
not support many fields. It mainly support one: song. So, if you
need to customize the metadata displayed by these servers, you should
customize only the song metadata.

The annotate protocol

The metadata are read from files, so the most simple way is to properly tag the
files. However, if it not possible to modify the files for some reason, the
annotate protocol can be used in playlists to insert and modify some
metadata. For instance, in the playlist

annotate:title="Title 1",artist="Artist 1":music1.mp3
annotate:title="Title 2",artist="Artist 2":music2.mp3

the title metadata for file music1.mp3 will be overridden and changed to ``Title
1’’ (and similarly for the artist).

Map metadata

The metadata.map operator applies a specified function to transform
each metadata chunk of a stream. It can be used to add or decorate metadata, but
is also useful in more complex cases.

A simple example using it:

A function applied to each metadata chunk
def append_title(m) =
 # Grab the current title
 title = m["title"]

 # Return a new title metadata
 [("title","#{title} - www.station.com")]
end

Apply metadata.map to s using append_title
s = metadata.map(append_title, s)

The effect of metadata.map by default is to update the metadata with the
returned values. Hence in the function append_title defined in the code above
returns a new metadata for the label title and the other metadata remain
untouched. You can change this by using the update option, and you can also
remove any metadata (even empty one) using the strip option.

See the documentation on metadata.map for more details.

Insert metadata

Using the telnet server

This operator is used for inserting metadata using a server command. If you have
an server.insert_metadata node named ID in your configuration, as in

server.insert_metadata(id="ID", source)

you can connect to the server (either telnet or socket) and execute commands
like

ID.insert key1="val1",key2="val2",...

In Liquidsoap

Sometimes it is desirable to change the metadata dynamically when an event
occurs. In this case, the function insert_metadata (not to be confused with
server.insert_metadata above) can be used: when applied to a source it returns
a source with an added insert_metadata method.

For instance, suppose that you want to insert metadata on the stream using the
OSC protocol. When a pair of strings title'' The new title’’ is received on
/metadata, we want to change the title of the stream accordingly. This can be
achieved as follows.

Our main music source
s = playlist("...")
s = mksafe(s)

Create a source with a `insert_metadata` method
s = insert_metadata(s)

Handler for OSC events (gets pairs of strings)
def on_meta(m) =
 # Extract the label
 label = fst(m)
 # Extract the value
 value = snd(m)
 # A debug message
 print("Insert metadata #{label} = #{value}")
 # Insert the metadata
 s.insert_metadata([(label,value)])
end

Call the above handler when we have a pair of strings on /metadata
osc.on_string_pair("/metadata",on_meta)

Output on icecast
output.icecast(%mp3,mount="test.mp3",s)

We can then change the title of the stream by sending OSC messages, for instance

oscsend localhost 7777 "/metadata" ss "title" "The new title"

Migrating to a new Liquidsoap version

In this page, we list the most common catches when migrating to a new version of
Liquidsoap.

Generalities

If you are installing via opam, it can be useful to create a new switch [https://opam.ocaml.org/doc/Usage.html] to install
the new version of liquidsoap. This will allow to test the new version while keeping
the old version around in case you to revert to it.

More generally, we recommend to always keep a version of your script around and also
to make sure that you test your new script with a staging environment that is
close to production. Streaming issues can build up over time. We do our best to
release the most stable possible code but problems can arise from many reasons
so, always best to first to a trial run before putting things to production!

From 2.1.x to 2.2.x

References

The !x notation for getting the value of a reference is now deprecated. You
should write x() instead. And x := v is now an alias for x.set(v) (both
can be used interchangeably).

Icecast and Shoutcast outputs

output.icecast and output.shoutcast are some of our oldest operators and were in dire need of some
cleanup so we did it!

We applied the following changes:

	You should now use output.icecast only for sending to icecast servers and output.shoutcast only for sending to shoutcast servers. All shared options have been moved to their respective specialized operator.

	Old icy_metadata argument was renamed to send_icy_metadata and changed to a nullable bool. null means guess.

	New icy_metadata argument now returns a list of metadata to send with ICY updates.

	Added a icy_song argument to generate default "song" metadata for ICY updates. Defaults to <artist> - <title> when available, otherwise artist or title if available, otherwise null, meaning don’t add the metadata.

	Cleaned up and removed parameters that were irrelevant to each operator, i.e. icy_id in output.icecast and etc.

	Made mount mandatory and name nullable. Use mount as name when name is null.

Harbor HTTP server and SSL support

The API for registering HTTP server endpoint and using SSL was completely rewritten. It should be more flexible and
provide node/express like API for registering endpoints and middleware. You can checkout the harbor HTTP documentation
for more details. The Https support section also explains the new SSL/TLS API.

Timeout

We used to have timeout values labelled timeout or timeout_ms, some of these would be integer and
in milliseconds, other floating point and in seconds etc. This was pretty confusing so, now all timeout
settings and arguments have been unified to be named timeout and hold a floating point value representing
a number of seconds.

In most cases, your script will not execute until you have updated your custom timeout
values but you should also review all of them to make sure that they follow the new
convention.

reopen_* arguments in output.file and similar

The reopen_* arguments have been unified in output.file, output.pipe and similar operators. Instead
of 3 different arguments for metadata, errors and regular reloads, which was making the logic pretty hard to
understand, now a single should_reload callback is given.

The callback receives two optional arguments, metadata and error and is called in 3 different conditions:

	When a new metadata comes up, in which case the metadata argument is present

	When an error occurs, in which case the error argument is present

	As the stream is playing unless a reopen is already scheduled, in which case both metadata and error arguments are null

Each time that the callback is executed, if it returns a positive float number, then a reload is scheduled
after that value (in seconds) has passed.

For instance, to reload after 2. seconds on errors and immediately on metadata but never otherwise, you can do:

def should_reload(~metadata, ~error) =
 if null.defined(error) then
 print("Reloading on error: #{error}")
 2.
 elsif null.defined(metadata) then
 print("Reloading on metadata")
 0.
 else
 null()
 end
end

Another use-case is to reload on top of each hour and do nothing on metadata or error. This can be a little more tricky because the callback
is called on every audio frame so several times per seconds. To prevent multiple reloads in a row, we block
all reloads after the first one until minute 00 has passed:

Use a ref to reload only once on minute 00:
has_reloaded = ref(false)

def should_reload(~metadata, ~restart) =
 if null.defined(metadata) or null.defined(restart) then
 null()
 elsif 00m and not has_reloaded() then
 has_reloaded := true
 0.
 else
 if not 00m then
 # Reset has_reloaded
 has_reloaded := false
 end
 null()
 end
end

Metadata overrides

Some metadata overrides have been made to reset on track boundaries. Previously, those were permanent even though they
were documented as only applying to the current track. If you need to keep the previous behavior, you can used the
persist_overrides parameters (persis_override for cross/crossfade).

The list of concerned metadata is:

	"liq_fade_out"

	"liq_fade_skip"

	"liq_fade_in"

	"liq_cross_duration"

	"liq_fade_type"

JSON rendering

The confusing let json.stringify syntax has been removed as it did not provide any feature not already covered by either
the json.stringify() function or the generic json() object mapper. Please use either of those now.

Default character encoding in output.{harbor,icecast,shoutcast}

Default encoding for output.harbor, output.icecast and output.shoutcast metadata has been changed to UTF-8 in all cases.

Legacy systems used to expect ISO-8859-1 (also known as latin1) for metadata inserted into mp3 streams via the icy
mechanism.

It seems that, nowadays, most software expect UTF-8 out of the box, including for legacy systems that previously
assumed other encodings. Therefore, by changing this default value, we try to match exectations of the largest
number of users of our software.

If you are using one of these outputs, make sure to test this assumptions with your listners’ clients. If needed, the
characters encoding can be set to a different value using the operator’s parameters.

Decoder names

Decoder names have been converted to lowercase. If you were relying on specific settings for decoders priority/ordering, you
will need to convert them to lowercase, for instance:

settings.decoder.decoders.set(["FFMPEG"])

becomes:

settings.decoder.decoders.set(["ffmpeg"])

Actually, because of the above change in references, this even becomes:

settings.decoder.decoders := ["ffmpeg"]

strftime

Add file-based operators do not support strftime type conversions out of the box anymore. Instead, you should use explicit conversions using time.string. This means that this script:

output.file("/path/to/file%H%M%S.wav", ...)

becomes:

output.file({time.string("/path/to/file%H%M%S.wav")}, ...)

Other breaking changes

	request.duration now returns a nullable float, null being value returned when the request duration could not be computed.

	getenv (resp. setenv) has been renamed to environment.get (resp. environment.set).

From 2.0.x to 2.1.x

Regular expressions

First-class regular expression are introduced and are used to replace the following operators:

	string.match(pattern=<regexp>, <string> is replaced by: r/<regexp>/.test(<string>)

	string.extract(pattern=<regexp>, <string>) is replaced by: r/<regexp>/.exec(<string>)

	string.replace(pattern=<regexp>, <string>) is replaced by: r/<regexp>/g.replace(<string>)

	string.split(separator=<regexp>, <string>) is replaced by: r/<regexp>/.split(<string>)

Partial application

In order to improve performance, avoid some programming errors and simplify the
code, the support for partial application of functions was removed (from our
experience it was not used much anyway). This means that you should now provide
all required arguments for functions. The behavior corresponding to partial
application can of course still be achieved by explicitly abstracting (with
fun(x) -> ...) over some arguments.

For instance, suppose that we defined the addition function with two arguments
with

def add(x,y) =
 x + y
end

and defined the successor function by partially applying it to the first
argument

suc = add(1)

We now need to explicitly provide the second argument, and the suc function
should now be defined as

suc = fun(x) -> add(1, x)

or

def suc(x) =
 add(1, x)
end

JSON parsing

JSON parsing was greatly improved and is now much more user-friendly.
You can check out our detailed presentation here.

Runtime evaluation

Runtime evaluation of strings has been re-implemented as a type-safe
eval let decoration. You can now do:

let eval x = "[1,2,3]"

And, just like with JSON parsing, the recommended use is with a
type annotation:

let eval (x: [int]) = "[1,2,3]"

Deprecations and breaking changes

	The argument streams_info of output.file.hls is now a record.

	Deprecated argument timeout of http.* operators.

	source.on_metadata and source.on_track now return a source as this was the case in previous versions, and associated handlers are triggered only when the returned source is pulled

	output.youtube.live renamed output.youtube.live.rtmp, remove bitrate and quality arguments and added a single encoder argument to allow stream copy and more.

	list.mem_assoc is replaced by list.assoc.mem

	timeout argument in http.* operators is replaced by timeout_ms.

	request.ready is replaced by request.resolved

From 1.4.x to 2.0.0

audio_to_stereo

audio_to_stereo should not be required in most situations anymore. liquidsoap can handle channels conversions transparently now!

auth function in input.harbor

The type of the auth function in input.harbor has changed. Where before, you would do:

def auth(user, password) =
 ...
end

You would now do:

def auth(params)
 user = params.user
 password = params.password
 ...
end

Type errors with lists of sources

Now that sources have their own methods, the actual list of methods attached to each source can vary from one to the next. For instance,
playlist has a reload method but input.http does not. This currently confuses the type checker and leads to errors that look like this:

At script.liq, line xxx, char yyy-zzz:
Error 5: this value has type
 _ * source(audio=?A, video=?B, midi=?C)
 .{
 time : () -> float,
 shutdown : () -> unit,
 fallible : bool,
 skip : () -> unit,
 seek : (float) -> float,
 is_active : () -> bool,
 is_up : () -> bool,
 log :
 {level : (() -> int?).{set : ((int) -> unit)}
 },
 self_sync : () -> bool,
 duration : () -> float,
 elapsed : () -> float,
 remaining : () -> float,
 on_track : ((([string * string]) -> unit)) -> unit,
 on_leave : ((() -> unit)) -> unit,
 on_shutdown : ((() -> unit)) -> unit,
 on_metadata : ((([string * string]) -> unit)) -> unit,
 is_ready : () -> bool,
 id : () -> string,
 selected : (() -> source(audio=?D, video=?E, midi=?F)?)
 }
but it should be a subtype of the type of the value at radio.liq, line 122, char 2-21
 _ * _.{reload : _}

In such cases, we recommend to give a little nudge to the typechecker by using the (s:source) type annotation where a list of source is causing the issue. For instance:

s = fallback([
 (s1:source),
 (s2:source),
 (s3:source)
])

This tells the type checker not to worry about the source methods and just focus on what matters, that they are actually sources.. 🙂

Http input and operators

In order to provide as much compatibility as possible with the different HTTP procotols and implementation, we have decided
to delegate HTTP support to external libraries which have large scale support and implementation. This means that,
if you have installed liquidsoap using opam:

	You need to install the ocurl package to enable all HTTP request operators, http.get, http.post, http.put, http.delete and http.head

	You need to install the ffmpeg package (version 1.0.0 or above) to enable input.http

	You do not need to install the ssl package anymore to enable their https counter-part. These operators have been deprecated.

Crossfade

The parameters for cross transitions was changed to take advantage of the new module system. Instead of passing multiple arguments
related to the ending and starting track, those are regrouped into a single record. So, if you had a transition like this:

def transition(
 ending_dB_level, starting_dB_level,
 ending_metadata, starting_metadata,
 ending_source, starting_source) =
...
end

You would now do:

def transition(ending, starting) =
 # Now you can use:
 # - ending.db_level, ending.metadata, ending.source
 # - starting.db_level, starting.metadata, starting.source
...
end

Settings

Settings are now exported as records. Where you would before write:

set("decoder.decoders", ["MAD", "FFMPEG"])

You can now write:

settings.decoder.decoders.set(["MAD", "FFMPEG"])

Likewise, to get a setting’s value you can now do:

current_decoders = settings.decoder.decoders()

This provides many good features, in particular type-safety.

For convenience, we have added shorter versions of the most used settings. These are all shortcuts to their respective settings values:

log.level.set(4)
log.file.set(true)
log.stdout.set(true)
init.daemon.set(true)
audio.samplerate.set(48000)
audio.channels.set(2)
video.frame.width.set(720)
video.frame.height.set(1280)

The register operator could not be adapted to this new API and had to be removed, however, backward-compatible
set and get operators are provided. Make sure to replace them as they should be removed in a future version.

Metadata insertion

The function insert_metadata does not return a pair anymore, but a source with
a method named insert_metadata. This means that you should change the code

fs = insert_metadata(s)
The function to insert metadata
f = fst(ms)
The source with inserted metadata
s = snd(ms)
...
Using the function
f([("artist", "Bob")])
...
Using the source
output.pulseaudio(s)

to

s = insert_metadata(s)
...
Using the function
s.insert_metadata([("artist", "Bob")])
...
Using the source
output.pulseaudio(s)

Request-based queueing

Queueing for request-based sources has been simplified. The default_duration and length have been removed in favor of
a simpler implementation. You can now pass a prefetch parameter which tells the source how many requests should be queued
in advance.

Should you need more advanced queueing strategy, request.dynamic.list and request.dynamic now export functions to retrieve
and set their own queue of requests.

JSON import/export

json_of has been renamed json.stringify and of_json has been renamed json.parse.

JSON export has been enhanced with a new generic json object export. Associative lists of type (string, 'a) are now
exported as lists. See our JSON documentation page for more details.

Convenience functions have been added to convert metadata to and from JSON object format: metadata.json.stringify and
metadata.json.parse.

Returned types from output operators

Starting with liquidsoap 2.0.0, output operators return the empty value () while they previously returned a source.

This helps enforce the fact that outputs should be end-points of your scripting graphs. However, in some cases, this can cause
issues while migrating old scripts, in particular if the returned value of an output was used in the script.

The way to fix this is to apply your operator to the source directly underneath the output. For instance, the following clock assignment:

s = ...

clock.assign_new([output.icecast(..., s)])

Should now be written:

s = ...

clock.assign_new([s], ...)

output.icecast(..., s)

Deprecated operators

Some operators have been deprecated. For most of them, we provide a backward-compatible support
but it is good practice to update your script. You should see logs in your script when running
deprecated operatords. Here’s a list of the most important ones:

	playlist.safe is replaced by: playlist(mksafe(..))

	playlist.once is replaced by: playlist, setting reload_mode argument to "never" and loop to false

	rewrite_metadata should be rewritten using metadata.map

	fade.inital and fade.final are not needed anymore

	get_process_output is replaced by: process.read

	get_process_lines is replaced by: process.read.lines

	test_process is replaced by: process.test

	system is replaced by: process.run

	add_timeout is replaced by: thread.run.recurrent

	on_blank is replaced by: blank.detect

	skip_blank is replaced by: blank.skip

	eat_blank is replaced by: blank.eat

	strip_blank is replaced by: blank.strip

	which is replaced by: file.which

	register_flow: flow is no longer maintained

	empty is replaced by: source.fail

	file.unlink is replaced by: file.remove

	string.utf8.escape is replaced by: string.escape

	metadata.map is replaced by: metadata.map

Windows build

The windows binary is statically built and, for this reason, we cannot enable both the %ffmpeg encoder and any encoder that
uses the same underlying libraries, for instance libmp3lame for mp3 encoding. The technical reason is that both libraries
import the same C symbols, which makes compilation fail.

The %ffmpeg encoder provides all the functionalities of the internal encoders that conflict with it along with many more format
we do not support otherwise. For this reason, it was decided to enable the %ffmpeg encoder and disable all other encoders.

This means that, if you were previously using a different encoder than %ffmpeg, you will need to adapt your script to
use it. For instance, for mp3 encoding with variable bitrate:

%ffmpeg(format="mp3", %audio(codec="libmp3lame", q=7))

Multitrack support

Starting with version 2.2.0, liquidsoap now supports track operations, making it possible to manipulate data at the
track level, including demuxing, remuxing, encoding, decoding, applying filters and more!

Only the FFmpeg decoder and encoder supports multitrack. This means that you need to have liquidsoap compiled
with the FFmpeg support to be able to decode or encode sources with multiple audio/video tracks.

Support for track muxing and demuxing and track-level operators, however, does not require the FFmpeg support but, without it, all decoders and outputs are limited to at most one audio and one video track.

Multitrack sources

Liquidsoap sources can have multiple tracks, such as an english language audio track and a french language audio track.
The number of tracks in a source is determined by how you use it.

For instance, if you have a file movie.mkv with two audio tracks and one video track,
you can create a source s with it using the single operator (or playlist, request.dynamic etc):

s = single("/path/to/movie.mkv")

By default, liquidsoap decodes only the track that you tell it to pick. So,
if you output this source as an output with only one audio track, it will happily do so:

s = single("/path/to/movie.mkv")

Copy first audio track and video:
output.file(
 %ffmpeg(
 %audio.copy,
 %video.copy
),
 "/path/to/copy.mkv",
 s
)

Resulting in the following logs:

[output_file:3] Content type is {audio=ffmpeg.copy,video=ffmpeg.copy}.
[decoder.ffmpeg:3] Requested content-type for "/path/to/movie.mkv": {audio=ffmpeg.copy,video=ffmpeg.copy}
[decoder.ffmpeg:3] FFmpeg recognizes "/path/to/movie.mkv" as video: {codec: h264, 1920x1038, yuv420p}, audio: {codec: aac, 48000Hz, 6 channel(s)}, audio_2: {codec: aac, 48000Hz, 6 channel(s)}
[decoder.ffmpeg:3] Decoded content-type for "/path/to/movie.mkv": {audio=ffmpeg.copy(codec="aac",channel_layout="5.1",sample_format=fltp,sample_rate=48000),video=ffmpeg.copy(codec="h264",width=1920,height=1038,aspect_ratio=1/1,pixel_format=yuv420p)}

This shows that the output.file source was initialized with expected content-type {audio=ffmpeg.copy,video=ffmpeg.copy}, i.e. one audio and one video
track, both copied from the original file. This comes from the %ffmpeg encoder definition in our script.

Then, the single file was decoded with the same requested content-type and FFmpeg reported all the details about the file’s content, including a second audio track named audio_2.

Eventually, we picked up only first audio and first video track and reported a more detailed content-type now that we know the actual content of each track.

Now, let’s say that we want to also keep the second audio track but convert it to stereo and re-encode it into aac. We can then do:

s = single("/path/to/movie.mkv")

Copy first audio track and video track
and re-encode second audio track:
output.file(
 %ffmpeg(
 %audio.copy,
 %audio_2(
 channels=2,
 codec="aac"
),
 %video.copy
),
 "/path/to/copy.mkv",
 s
)

And now we see the following logs:

[output_file:3] Content type is {audio=ffmpeg.copy,audio_2=pcm(stereo),video=ffmpeg.copy}.
[decoder.ffmpeg:3] Requested content-type for "/path/to/movie.mkv": {audio=ffmpeg.copy,audio_2=pcm(stereo),video=ffmpeg.copy}
[decoder.ffmpeg:3] FFmpeg recognizes "/path/to/movie.mkv" as video: {codec: h264, 1920x1038, yuv420p}, audio: {codec: aac, 48000Hz, 6 channel(s)}, audio_2: {codec: aac, 48000Hz, 6 channel(s)}
[decoder.ffmpeg:3] Decoded content-type for "/path/to/movie.mkv": {audio=ffmpeg.copy(codec="aac",channel_layout="5.1",sample_format=fltp,sample_rate=48000),audio_2=pcm(5.1),video=ffmpeg.copy(codec="h264",width=1920,height=1038,aspect_ratio=1/1,pixel_format=yuv420p)}

Now, we are actually using both audio tracks from movie.mkv and one of them is being converted to stereo audio!

One thing to keep in mind, however, is that expected content-type drives the input decoder. Typically, if, instead of a single, you use a playlist:

s = playlist("/path/to/playlist")

Copy first audio track and video track
and re-encode second audio track:
output.file(
 fallible=true,
 %ffmpeg(
 %audio.copy,
 %audio_2(
 channels=2,
 codec="aac"
),
 %video.copy
),
 "/path/to/copy.mkv",
 s
)

Then all the files in the playlist who do not have at least two audio tracks and one video track will be rejected by the decoder!

Lastly, it is important to keep in mind that decoders always assume a specific nomenclature for tracks. The convention when decoding is to name the first audio track audio, then audio_2, audio_3 and etc. Likewise for video: video, video_2, video_3.

Typically, the following will not work:

s = playlist("/path/to/playlist")

Copy first audio track and video track
and re-encode second audio track:
output.file(
 fallible=true,
 %ffmpeg(
 %audio_fr.copy,
 %audio_en(
 channels=2,
 codec="aac"
),
 %video.copy
),
 "/path/to/copy.mkv",
 s
)

This is because the decoder has no way of knowing which of the audio track present in the files in s should be matched to audio_en and audio_fr.copy.

One might think that the order in which they are declared in the encoder could be used but this would also be tricky as the decoder could report tracks in different order when decoding different files from the playlist.

Also, and perhaps more importantly, tracks can be demuxed and remuxed at will, which also makes us loose the notion of track order. Actually, let’s talk about demuxing and remuxing next!

Tracks demuxing and muxing

For any given source, you can extract its tracks using the source.tracks operator:

s = playlist(...)

let {audio, video, metadata, track_marks} = source.tracks(s)

In the above, audio and video represent, resp., the audio and video track from the source s.

The metadata and track_marks tracks are special track type that are available in any source and hold, as the name suggests, the source’s metadata and track marks. We will see later how this can be used to e.g. drop all tracks from a source (something that used to be done with the
drop_tracks operator), or select metadata only from a specific source or track.

Internally, a track is a source restricted to a single content-type. This means that:

	When pulling data for a given track, the underlying source is used, potentially also pulling data for its other tracks

	Tracks are subject to the same limitations as sources w.r.t. clocks

	Tracks, like sources, always have a metadata and track_marks tracks. The track.metadata and track.track_marks operators can be used to retrieve them.

Tracks can be muxed using the source operator. The operator takes a record of tracks and creates a source with them. Tracks can have any name and type except metadata and track_marks that are reserved for their corresponding track types.

Add a video track

Here’s how to add a video track to a source

A playlist of audio files
s = playlist(...)

A static image
image = single("/path/to/image.png")

Get the playlist's audio track, metadata and track marks
let {audio = playlist_audio, metadata, track_marks} = source.track(s)

Get the video track from our static image
let {video = image_video} = source.tracks(s)

Mux the audio tracks with the image
s = source({
 audio=playlist_audio,
 video=image_video,
 metadata=metadata,
 track_marks=track_marks
})

The above example was purposely written in a longer form to make it more explicit. However, if you wish to just add/replace a track, you
can also overload the existing tracks from the first source as follows:

A playlist of audio files
s = playlist(...)

A static image
image = single("/path/to/image.png")

Mux the audio tracks with the image
s = source(source.tracks(s).{video=source.tracks(image).video})

Add a default video track

You can also check if a source has a certain track and do something accordingly:

s = playlist(...)

A default video source:
image = single("/path/to/image.png")

Pick `s` video track if it has one, otherwise use the default one:
video = source.tracks(s).video ?? source.tracks(image).video

Return a source that always has video:
s = source(source.tracks(s).{video=video})

Please note, however, that tracks available in the playlist sources are determined based on the first decoded file. If the first file in the playlist is audio-only then the playlist content-type is assumed to be audio-only for the whole playlist and the default video is added to all decoded files.

To decide on a case-by-case basis, you might need some more advanced coding!

Merge all tracks

As mentioned before, you can also remove the track marks from a source as follows:

s = playlist(...)

Extract all tracks except track_marks:
let {track_marks=_, ...tracks} = source.tracks(s)

s = source(tracks)

Track-level operators

Some, but not all, operators have been updated to operate at the track level. They are documented under the Track section in the API documentation. More operators might be converted in the future (feel free to file a feature request for those!).

For instance, to convert an audio track to mono PCM audio, one can do:

mono_track = track.audio.mean(audio_track)

Likewise, inline encoders are now available at the track level, for instance:

encoded_audio_track = track.ffmpeg.encode.audio(%ffmpeg(%audio(codec="aac")), audio_track)

However, remember that tracks have the same limitations w.r.t. clocks that sources have. Here, in particular, encoded_audio_track is in a new
clock (due to the fact that ffmpeg inline encoding is not synchronous). Therefore, the following will fail:

s = playlist(...)

let {audio, metadata, track_marks} = source.tracks(s)

encoded = source({
 audio = track.ffmpeg.encode.audio(%ffmpeg(%audio(codec="aac")), audio),
 metadata = metadata,
 track_marks = track_marks
})

This is because metadata and track_marks are tracks from the underlying s source, which belongs to a different clock. In this case, you should
use the track marks and metadata from the encoded track:

s = playlist(...)

let {audio, metadata, track_marks} = source.tracks(s)

encoded_audio = track.ffmpeg.encode.audio(%ffmpeg(%audio(codec="aac")), audio)

encoded = source({
 audio = encoded_audio,
 metadata = track.metadata(encoded_audio),
 track_marks = track_marks(encoded_audio)
})

Conventions

Now that we have seen how we can create any collection of tracks with any possible name, in order to make things work, we need to assume a couple of conventions.

For decoders, the convention, as explained above, is, when decoding files, to name the first audio track audio, then audio_2, audio_3 and etc. Likewise for video: video, video_2, video_3.

This is the convention that you should use when demuxing tracks from request-based source:

s = playlist(...)

let {audio, audio_2, video, video_2, video_3} = source.tracks(s)

For encoders, to drive content-type at runtime, since tracks can be remuxed with any arbitrary name, we need to a way to decide what type of content a track contains, being audio, video or, potentially midi and, planned for later, subtitles. This is achieved using the following convention, by order of priority:

	A copy track is any track named %<track_name>.copy. We do not need to know the track’s content in this case.

	If a track has audio_content or video_content as parameter (for instance %foo(audio_content, ...)) then it is considered, resp., audio or video.

	If the track name has audio or video in it (for instance %dolby_audio_fr) then it is considered, resp., audio or video

	If the track codec is hardcoded (for instance (%foo(codec="aac", ...)) then the codec is used to detect the content.

For instance, imagine that you want to encode a source with a fr and en audio track and a director_cut video track, you can do the following:

output.file(
 %ffmpeg(
 %en(codec="aac"),
 %fr(codec="aac"),
 %director_cut(codec="libx264")
),
 "/path/to/copy.mkv",
 s
)

This works because each of the codec used in these tracks can be mapped to a specific content-type.

Now, imagine that you actually want to use a variable for the codec of the en and director_cut track. In this case, you can do:

output.file(
 %ffmpeg(
 %en(audio_content, codec=audio_codec)
 %fr(codec="aac"),
 %director_cut(video_content, codec=video_codec)
),
 "/path/to/copy.mkv",
 s
)

This informs liquidsoap what type of content these tracks contain.

However, you might also opt for a more explicit track naming scheme. Something like:

output.file(
 %ffmpeg(
 %audio_en(codec=audio_codec),
 %audio_fr(codec="aac"),
 %director_cut_video(codec=video_codec)
),
 "/path/to/copy.mkv",
 s
)

In this case, liquidsoap assumes that the track with audio in their name are indeed audio track and the same goes for video tracks.

Lastly, these naming conventions have no bearing for the FFmpeg encoder. At the FFmpeg encoder level, tracks are identified by an integer and stored
in the order they are declared in the %ffmpeg encoder. This means that, once encoded and saved to a file, track names internal to liquidsoap are not saved by the FFmpeg encoder and, instead, when decoding the file, you will get audio, audio_2, video and etc.

 Savonet was at the ON2: Test Signals [http://testsignals.org/] conference in
Berlin, on October 22-23 2010. We presented Liquidsoap, but also held the first
Liquidsoap workshop.

 Run liquidsoap on one-liners

 This part starts from scratch. All you need is a working install
of liquidsoap.
If you don’t have one already, we can help you;
but if you haven’t, check the corresponding page.

Run liquidsoap on one-liners

A good way to test your install and get started
is to execute very small liquidsoap programs.
Such ``one-liners’’ are also often useful to accomplish simple tasks.

Play a synthesized sound

Simply execute the following command,
and you should hear a 440Hz sound on your soundcard:

liquidsoap 'out(sine())'

Did it work? If so, try to modify it:

	Change the pitch. Hint: get the doc of sine using liquidsoap -h sine or online.

	Use a different wave shape, or perhaps some white noise. Hint: look-up the API in the Source / Input section.

Play a remote stream, discover fallibility

Try to execute the liquidsoap expression:

out(input.http("http://ice.rosebud-media.de:8000/88vier"))

You should now be listening to Pi-Radio [http://piradio.de],
unless you have no network connection, in which case the
input.http(...) source fails.

The output operator out is okay with failure: it simply plays silence
when the source fails, waiting for it to be ready again.
But some operators are stricter.
If you try

output.ao(input.http("http://ice.rosebud-media.de:8000/88vier"))

the AO output (which uses libao to access your soundcard)
warns you that there might be a failure.
To ignore this problem, pass fallible=true to the output.

This might seem annoying
but it can make sense if you have listeners and you want to make
sure that your stream is always up and running for them.

Play a list of files

The playlist operator can be used to build a source that plays
a list of files. The resulting source will be fallible.
You can either pass a directory name, or a text file containing the
list of files.
There are lots of possibilities here, but for now just look
at the mode parameter; we’ll learn more later.

An interactive example

Suppose we want to be able to request a particular file for playout
instead of the automatically chosen files of the playlist.
This is achieved by wrapping the playlist in a fallback choice
with a request queue:

out(fallback([request.queue(id="q"),playlist("music")]))

If you run this example, you’ll hear your playlist, because the queue
is empty. The queue can be fed through server commands. Enable the
telnet server interface by passing -t on liquidsoap’s command line,
and connect to it using telnet localhost 1234.

	Type help, find the command for pushing a request (by its file name) in the queue, and try it.

	Find the command for skipping the current track. If you skip a playlist track after having pushed a request in the queue, you should hear that request – unless the request failed to be prepared.

	Find the command for listing the next requests in queue. They are given by their request id (RID); the commands request.metadata and request.trace give you info from the RID.

	Also notice commands for listing the next files to be played by the playlist (depends on the playlist more), and reloading the playlist.

	Try setting track_sensitive=false for the fallback, see what it does (better, guess what it does from the doc).

Encode a file

You have learned how to build a few sources, synthesizing sound from scratch,
from a remote stream or from a list of files. Now, instead of playing the
stream directly to your soundcard, we’ll encode it and save it to a local
file:

output.file(%vorbis,"test.ogg",source)

Here source is whatever you want, for example sine().

You can tweak the options of the encoding format, or change the encoding
format; the available options are listed here.
You can change the number of channels (for example, using %vorbis(mono))
but this may create problems with a playlist or remote stream,
because conversions are not implicit in liquidsoap;
we’ll see later how to deal with them.

Icecast output

You can now easily change the file example to send you stream to an
icecast server: simply use output.icecast instead of output.file,
passing a mount parameter instead of a file name,
and perhaps overriding the defaults for host ("127.0.0.1")
and password ("hackme").
You just created your first Internet radio using liquidsoap!

If you have control over the icecast server (or over the network link to that
server) you can simulate a loss of connection. Notice that liquidsoap only
attempts once to reconnect, then fails and shuts down. For another behavior
that tolerates more persistent failures, set restart=true.

Using liquidsoap in production

One-liners are good for one-shot uses, but not the most convenient
for more complex liquidsoap programs, and for saving/editing the program.

Running a script file

Write the interactive example expression in a file, say test.liq.

	You can run it using liquidsoap -t - < test.liq, you get the same behavior as before.

	If you run it using liquidsoap -t test.liq the logs will be written in test.log in the default logging directory. This can fail as you may not have access to that directory. Change the directory using the setting (see how to get help about that) log.file.path. Then use the settings log.stdout and log.file for logging to the terminal and not to a file.

	Finally, find the setting for getting rid of the -t option on the command line.

	You can also use #!/usr/bin/liquidsoap (adapt the path) as the first line of your script to directly run ./test.liq instead of liquidsoap test.liq (you need to chmod +x test.liq).

You can also load several scripts and expression on the command line. The last
script or expression is taken as the main one, and determines the logging behavior of liquidsoap.

Daemon mode

Finally, the -d command-line option (or init.daemon setting) triggers
the daemon mode where liquidsoap detaches from the terminal to run in the
background.

Checking a media file

To check how liquidsoap sees a file, you can run liquidsoap -r <FILE>.
Liquidsoap will attempt to decode the file and its metadata,
and compute its duration.
This is (almost) the same process as used during streaming,
so it can be used for checking how something works (or doesn’t work).

Get comfortable with the language

Although it’s easy to forget it when using simple liquidsoap expressions,
liquidsoap is a rich programming language.
Below is a list of simple exercises to get more comfortable with it.
Those exercises do not deal with sources and even less with radio,
and might seem pretty dull. But it’s useful to go through them and
try to understand what’s going on: it will allow you to avoid the
most common mistakes later,
when trying to write more complex liquidsoap scripts.

You can write the following examples in a script and execute it, or
type them directly in your terminal, followed by ctrl-D, on the
standard input of liquidsoap -.
You can also pass -c so that liquidsoap does not warn you that
it has no source to stream.

Using variables

Run the following script:

x = 42
print(x)

As follows:

% liquidsoap --no-stdlib -i /path/to/script.liq
x : int
42
No output defined, nothing to do.

Try to obtain the following types (some help can be found there):

	float

	bool

	string

	[string] (list of strings)

	(bool*string) (a pair made of a boolean and a string)

You can redefine a variable:

x = 42
y = "42"
x = (y,y)
z = (x,y)
print(z)

Defining a function

Try this:

def double(s)
 s ^ s
end
print(double("foo"))

Change ^ for +. Liquidsoap will complain that it cannot add strings;
additions are only for numbers (integers and floats). Adapt the last line
to fix that problem.

Conditionals

A simple example:

if "foo"=="bar" then
 print("This is madness.")
else
 print("Phew.")
end

It can also be written as follows:

print(
 if "foo"=="bar" then
 "This is madness."
 else
 "Phew."
 end)

Now, define the variable message to be the correct message depending
on the test, and finish by print(message).
To do this, keep in mind the following:
A variable definition is local to the current scope.
Redefining a new variable does not erase or override previous definitions
but only masks them in the current scope.
In other words, definitions should not be confused with
assignments (which are performed by x=... in non-functional languages).
You’ll learn later how to use assignments when you really need them.

Sequencing, returning

Here is a function that prints the date and returns 42:

def f()
 print(get_process_output("date"))
 42
end
Let's use it:
print(f())
print(1+f())

Note that there is no return statement in liquidsoap (in fact there is
no “statement” at all). Every expression evaluates to a value. A sequence
evaluates to the value of its last expression (42 in the body of the function
f, and print(1+f()) in the full program).
The value ``returned’’ by a function is simply the result of evaluating its
body.

Labels and optional parameters

In liquidsoap, functions arguments can be labeled or not.
For example, in f(x,y,foo=z) we pass x and y as the first two
unlabeled arguments, and z for the argument labeled foo.
Moreover, labeled arguments can be optional:
you saw this with most examples in this page, where each operator
had lots of parameters that you didn’t set (for example,
track_sensitive in fallback).

When reading the doc of a function, you see the type of the function,
followed by a description of its arguments. Often you can ignore the
type, but when you write an incorrect script, you might need to read
types to understand error messages. A function type is written
(A1,..,AN)->T where T is the type of values returned by the function
and each Ai specifies one parameters:

	unlabeled parameters are simply given by their type (for example, string concatenation has type (string,string)->string);

	mandatory labeled parameters are written label:T where T is the type of the parameter;

	optional labeled parameters are written ?label:T.

You will rarely have to define a function with labeled parameters,
but if you’re curious you can learn it there.

What you cannot do

Liquidsoap does not have while and for loops, nor recursion.
This is mostly because they are not really needed (yet…), notably
since functions like list.map and list.iter are often a good replacement.

 Building an advanced stream: file-based sources

Building an advanced stream: file-based sources

The purpose of this part is to document and illustrate the creation of an
advanced stream using static files.

In order to be self-contained, we will use here only pure liquidsoap scripting
functionalities. However, all the parts that use pre-defined functions can be
implemented using external scripts, which is the most common practice, and has
proved to be very convenient in order to integrate your liquidsoap stream into
the framework that you use to manage your radio.

Preliminaries

In order to make things more clear and modular, we will
separate the code in two parts:

	radio.liq is the script that contains the definition of the main stream

	library.liq is the script that contains the functions used to build the stream

The scripts here should be tested using the following
command line:

liquidsoap /path/to/radio.liq

Thus, we do not define here daemonized script. In order to make
things work smoothly, you should put the following lines at the beginning
of radio.liq:

log.file.set(false)
log.stdout.set(true)
log.level.set(3)

Finally, we add the following line at the beginning of radio.liq,
in order to load our pre-defined functions:

%include "/path/to/library.liq"

We will use the telnet server to interact with the radio.
Thus, we enable the telnet server by adding the following line in radio.liq:

settings.server.telnet.set(true)

An initial model

In this part, we describe the initial stream that we want.
We start with a simple stream that contains songs from
a static playlist, with some jingles, with 3 songs for one jingle,
and output the result to an icecast server. This
is described by the following graph:

[image: assets/img/on2_part2_schema1.svg]Initial stream model

This very simple stream is defined by the following content
in radio.liq:

The file source
songs = playlist("/path/to/some/files/")

The jingle source
jingles = playlist("/path/to/some/jingles")

We combine the sources and play
one single every 3 songs:
s = rotate(weights=[1,3], [jingles, songs])

We output the stream to an icecast
server, in ogg/vorbis format.
output.icecast(%vorbis,id="icecast",
 fallible=true,mount="my_radio.ogg",
 host="my_server", password="hack_me_not",
 s)

For now, library.liq does not contain any code so we only do:

touch /path/to/library.liq

	Write this script to a file, change the default directories and parameters.

	Run it.

	Listen to your initial stream.

	Connect to the telnet server (telnet localhost 1234)

	Try the telnet comment: icecast.skip

	Check that a jingle is played every 3 songs.

	Sometimes, when skipping, the source does not prepare a new file quickly enough, which breaks the rotation. If this is the case, add the parameter conservative=true to each playlist and try again.

Now, we extend this initial stream with some advanced features:

Notify when a song is played

Once the stream is started, we may want to be able to keep track of the songs that are played,
for instance to display this information on a website.
One nice way to do this is to call a function every time that a new track is passed to the
output, which will inform the user of which tracks are played and when. This can be done
using the on_metadata operator.

First, we define a function that is called every time a new metadata is seen in the stream.
This is a function of type (metadata)->unit, i.e. a function that receives the metadata
as argument and returns nothing.
The metadata type is actually [(string*string)],
i.e. a list of elements of the form ("label","value").

Thus, we add the following in library.liq:

This function is called when
a new metadata block is passed in
the stream.
def apply_metadata(m) =
 title = m["title"]
 artist = m["artist"]
 print("Now playing: #{title} by #{artist}")
end

Note: the string "foo #{bla}" can also be written "foo " ^ bla and is the
string ``foo bar’’, if blais the string"bar".

Now, we apply the on_metadata operator with this function just
before passing the final source to the output, so we write in radio.liq,
before the output line:

s = on_metadata(apply_metadata,s)

	Update your scripts.

	Run the new radio.

	Observe the lines printed on new metadata.

	You may prefer to use the log function rather than print.

Solutions:

	radio.liq

	library.liq

Custom scheduling

Another issue with the above stream is the fact that jingles have a strict
frequency of one jingle every 3 songs. In a lot of cases, you may want
more flexibility and have full-features scheduling of your songs. The
best approach in this case is to externalize this operation by creating
a scheduler with the language/framework of your choice and integrating it
with liquidsoap using request.dynamic.list.

request.dynamic.list takes a function of type ()->[request('a)],
i.e. a function with no arguments that returns an array of new requests to queue
and create a source with it. Every time that liquidsoap needs to
prepare a new file, it will execute the function and use its result.

Requests in liquidsoap are created with the function request.create,
which takes an URIs of the form:

protocol:arguments

where protocol: is optional is arguments is the URI of a local file.
For instance, ftp://server.net/path/to/file.mp3 is a requests using
the ftp protocol, which is resolved using wget (if present in the
system).

We are going to use request.dynamic.list to merge both the songs and
jingles sources into one source and let our external scheduler
decides when to play a jingle or a song. However, we will need
later to know if we are currently playing a song or a jingle.

For these reasons, we will be using the annotate: protocol.
This protocol can be used to pass additional metadata along
with the metadata of the file. Here, we will pass a metadata
labeled "type", with value "song" if the track is a song
or "jingle" otherwise.

In the context of this simple presentation, we will write
a dummy script. Thus, we create a file "/tmp/request"
that contains a line of the form:

annotate:type="song":/path/to/song.mp3

And, we add in library.liq:

Our custom request function
def get_request() =
 # Get the URI
 uri = list.hd(default="",get_process_lines("cat /tmp/request"))
 # Create a request
 [request.create(uri)]
end

Now, we replace the lines defining songs, files and the line
using the rotate operator in radio.liq with the following code:

s = request.dynamic.list(id="s",get_request)

	Update your scripts.

	Run the new radio.

	Edit "/tmp/request" and change its content to:

annotate:type="jingle":/path/to/jingle.mp3

	Use the command s.skip through the telnet server and verify that the new song is being played. This may need more than one skip..

	Use the commands request.on_air and request.metadata through the telnet server to verify the presence of the type metadata

	Extra: think about how to use the previous notification code to interact with this function.

Solutions:

	radio.liq

	library.liq

Custom metadata

We have just seen how it is possible to use the annotate: protocol to
pass custom metadata to any request. Additionally, it is also possible to rewrite
your stream’s metadata on the fly, using the on_metadata operator.

This operator takes a function of the type metadata->metadata, i.e. a function
that takes the current metadata and returns some metadata. Thus, when metadata.map
sees a new metadata in the stream, it calls this function and, by default, updates
the metadata with the values returned by the function.

Here, we use this operator to customize the title metadata with the name of our radio.
First, we create a file "/tmp/metadata" containing:

My Awesome Liquidsoap Radio!

Then, in library.liq, we add the following function:

This function updates the title metadata with
the content of "/tmp/metadata"
def update_title(m) =
 # The title metadata
 title = m["title"]
 # Our addition
 content = list.hd(get_process_lines("cat /tmp/metadata"))

 # If title is empty
 if title == "" then
 [("title",content)]
 # Otherwise
 else
 [("title","#{title} on #{content}")]
 end
end

Finally, we apply metadata.map to the source, just after the request.dynamic.list
definition in radio.liq:

s = metadata.map(update_title,s)

Solutions:

	radio.liq

	library.liq

Infallible sources

It is reasonable, for a radio, to expect that a stream is
always available for broadcasting. However, problems may happen (and always
do at some point). Thus, we need to offer an alternative for the case
where nothing is available.

Instead of using mksafe, which streams blank
audio when this happens, we use a custom sound file. For instance, this
sound file may contain a sentence like ``Hello, this is radio FOO! We are currently
having some technical difficulties but we’ll be back soon so stay tuned!’’.

We do that here using the say: protocol, which creates a speech synthesis
of the given sentence. Otherwise, you may record a (more serious) file and
pass it to the single operator…

First, we add the following in library.liq

This function turns a fallible
source into an infallible source
by playing a static single when
the original song is not available
def my_safe(s) =
 # We assume that festival is installed and
 # functional in liquidsoap
 security = single("say:Hello, this is radio FOO! \
 We are currently having some \
 technical difficulties but we'll \
 be back soon so stay tuned!")

 # We return a fallback where the original
 # source has priority over the security
 # single. We set track_sensitive to false
 # to return immediately to the original source
 # when it becomes available again.
 fallback(track_sensitive=false,[s,security])
end

Then, we add the following line in radio.liq, just before
the output line:

s = my_safe(s)

And we also remove the fallible=true from the parameters of output.icecast.

	Update your scripts.

	Run and test the new radio.

	To hear the security jingle, you can empty "/tmp/request" and use the skip command in telnet or wait for the end of the current song.

	If you put a new valid request in "/tmp/request" then the stream comes back to the normal source.

Solutions:

	radio.liq

	library.liq

Multiple outputs

We may as well output the stream to several targets,
for instance to different icecast mount points with different
formats. Therefore, we define a custom output function
that defines all these outputs.

We add the following in library.liq:

A function that contains all the output
we want to create with the final stream
def outputs(s) =
 # First, we partially apply output.icecast
 # with common parameters. The resulting function
 # is stored in a new definition of output.icecast,
 # but this could be my_icecast or anything.
 output.icecast = output.icecast(host="my_server",
 password="hack_me_not")

 # An output in ogg/vorbis to the "my_radio.ogg"
 # mountpoint:
 output.icecast(%vorbis, mount="my_radio.ogg",s)

 # An output in mp3 at 128kbits to the "my_radio"
 # mountpoint:
 output.icecast(%mp3(bitrate=128), mount="my_radio",s)

 # An output in ogg/flac to the "my_radio-flac.ogg"
 # mountpoint:
 output.icecast(%ogg(%flac), mount="my_radio-flac.ogg",s)

 # An output in AAC+ at 32 kbits to the "my_radio.aac"
 # mountpoint
 output.icecast(%fdkaac(bitrate=32), mount="my_radio.aac",s)
end

And we replace the output line in radio.liq by:

outputs(s)

	Write your own output function.

	Run and test your new radio.

Note liquidsoap may fail with the following error:

Connection failed: 403, too many sources connected (HTTP/1.0)!

In this case, you should check the maximum number of sources that your
icecast server accepts.

Solutions:

	radio.liq

	library.liq

More advanced functions!

Now that we have a controllable initial radio, we extend our initial
scripts to add advanced features. The following graph illustrates what
we are going to add:

[image: assets/img/on2_part2_schema2.svg]Advanced stream model

** The Replay gain node normalizes all the songs using the Replay Gain [https://en.wikipedia.org/wiki/ReplayGain] technology.

	The Smart crossfade node adds crossfading between songs but not jingles.

	The Smooth_add node adds the possibility to insert a jingle in the middle of a song, fading out and then back in the initial stream while the jingle is being played.

Replaygain

The replaygain support is achieved in liquidsoap in two steps:

	apply the amplify operator to change a source’s volume

	pass a "replay_gain" metadata indicating to the amplify operator which value to use.

The "replay_gain" metadata can be passed manually or computed by liquidsoap.
Liquidsoap comes with a script that can extract the replaygain information
from ogg/vorbis, mp3 and FLAC files. This is a very convenient script but it generate
a high CPU usage which can be bad for real-time streaming.
In some situations, you may compute beforehand this value and pass it manually
using the annotate protocol.

If you cannot compute the value beforehand, liquidsoap comes with two ways
to extract the replaygain information

	The replay_gain: protocol. All requests of the form replay_gain:URI are resolved by passing URI to the script provided by liquidsoap. This method allows to select which files should be used with replay gain. However, it will only work if URI is a local file.

	The replay gain metadata resolver, enabled by adding a line of the form enable_replaygain_metadata () in your script. In this cases, all requests and not only local files can be processed and you cannot select which one should be used with replaygain.

The most simple solution, in our case, is to change the requests
passed to request.dynamic.list to something of the form:

annotate:type="song":replay_gain:URI

However, in order to illustrate a bit more the functionalities of liquidsoap we present
another solution.
The method we propose here consists in using metadata.map, which we have already seen
to update the metadata with a "replay_gain" metadata when we see the "type" metadata
with the value "song". Thus, we add the following function in library.liq:

This function takes a metadata,
check if it is of type "file"
and add the replay_gain metadata in
this case
def add_replaygain(m) =
 # Get the type
 type = m["type"]
 # The replaygain script is located there
 script = "#{configure.bindir}/extract-replaygain"
 # The file name is contained in this value
 filename = m["filename"]

 # If type = "song", proceed:
 if type == "song" then
 info = list.hd(get_process_lines("#{script} #{filename}"))
 [("replay_gain",info)]
 # Otherwise add nothing
 else
 []
 end
end

And, we add the following line in radio.liq after the request.dynamic.list line:

s = metadata.map(add_replaygain,s)

Finally, we add the amplify operator. We set the default amplification
to 1., i.e. no amplification, and tell the operator to update this value with
the content of the "replay_gain" metadata. Thus, only the tracks which have this
metadata will be modified.

We add the following in radio.liq, after the line we just inserted:

s = amplify(override="replay_gain",1.,s)

Note we can also apply amplify only to songs, before the switch operator

	Update your scripts.

	Run and test the new radio.

	Change the content of "/tmp/request" with something of type "file" and skip the current song.

	Use the telnet server to make sure that the new "replay_gain" metadata has been added.

	Also, in the logs, you should be able to see that the replay_gain information was used to override the amplification factor.

	Can you find a content for "/tmp/request" that will enable replay gain on a file which is not of type "song"?

Note in this case, the replay_gain metadata is not added during the request resolution.
Thus, it is not visible in the request.metadata. However, you should be able to find another
command that displays it!

Solutions:

	radio.liq

	library.liq

Smart crossfade

The smart_crossfade is a crossfade operator that decides the crossfading to apply depending
on the volume and metadata of the old and new track.

It is defined using a generic smart_cross
operator, that takes a function of type (float, float, metadata, metadata, source, source) -> source,
i.e. a function that take the volume level (in decibels) of, respectively, the old and new
tracks, the metadata of, resp. the old and new tracks and, finally, the old and new tracks,
and returns the new source with the required transition.

We give here a simple custom implementation of our crossfade. What we do is:

	Crossfade tracks if none of the old and new track are jingle;

	Sequentialize the tracks otherwise.

We identify the type of each track by reading the "type" metadata we
have added when creating the request.dynamic.list source.

A typical smart_crossfade operator is defined in utils.liq
but you may do much more things with a little bit of imagination.

Here, we add the following in library.liq:

Our custom crossfade that
only crossfade between tracks
def my_crossfade(s) =
 # Our transition function
 def f(_,_, old_m, new_m, old, new) =
 # If none of old and new have "type" metadata
 # with value "jingles", we crossfade the source:
 if old_m["type"] != "jingle" and new_m["type"] != "jingle" then
 add([fade.initial(new), fade.final(old)])
 else
 sequence([old,new])
 end
 end
 # Now, we apply smart_cross with this function:
 smart_cross(f,s)
end

Finally, we add the following line in radio.liq, just after the
amplify operator:

s = my_crossfade(s)

	Update your scripts.

	Run and test the new radio.

	Modify the custom crossfading to fade out the old song if it is not a jingle, and fade in the new song if it is not a jingle.

Solutions:

	radio.liq

	library.liq

Smooth_add

Finally, we add another nice feature: a jingle that is played on top of the
current stream. We use the smooth_add operator, which is also defined in
utils.liq. This operator takes a normal source and a special jingle source.
Every time that a new track is available in the special source, it fades out
the volume of the normal source, plays the track from the special source
on top of the current track of the normal source, and then fades back in
the volume of the normal source when the track is finished.

Typically, you use for the special source a request.queue where you push a new
jingle every time you want to use this feature.

We modify radio.liq and add the following line just before my_safe:

A special source
special = request.queue(id="special")
Smooth_add the special source
s = smooth_add(normal=s,special=special)

	Update your script.

	Run and test the new radio.

	Use the telnet server to push the request say:My new radio rocks! in the special source.

	Listen!

Solutions:

	radio.liq

	library.liq

What about DJs?

We present now another important part of an advanced stream: the addition of a live stream
in order to allow DJs to broadcast their shows.

We are going to add the following features:

	A live input that is played immediately when it is available

	Use different harbor ports, to replace mount points for shoutcast source clients

	A transition jingle that is played when switching between live and files

	Skip the file currently being played when switching to a live source so that the file-based source starts with a fresh song when the live stops

	Define different authentications for the DJs and make sure that a DJ can only broadcast when its show is scheduled

Live inputs

The live inputs in liquidsoap are of two types:

	Network-based, mostly input.http and input.harbor.

	Hardware-based, with operators like input.alsa, input.jack, etc.

We focus here on the first type, and more precisely on input.harbor. When using
this operator in your script, the running instance will be able to receive data
coming from icecast and shoutcast source clients. Then, your DJs can broadcast
a live stream using their favorite software. Liquidsoap supports most of the
usual data formats, when enabled as encoder:

	MP3

	Any supported ogg stream

	Aac and Aac+

You may also communicate data between two liquidsoap instance, one using output.icecast
to send data and the other one input.harbor to receive it. In this case, you want also
use the WAVE or FLAC format to send lossless data.

We add a live source in radio.liq, anywhere before the outputs:

live = input.harbor("live")

Note "live" is the name of the mountpoint that will be
associated to this source. The default parameters for the port,
user and password are contained in the following settings:

settings.harbor.password.set("hackme")
settings.harbor.port.set(8005)
settings.harbor.username.set("source")

We want the live source to be played as soon as it becomes available. Thus, we
use a fallback to combine it with the file-based source, and add the following code
after my_safe in radio.liq:

s = fallback(track_sensitive=false, [live,s])

Note the track_sensitive=false parameter tells liquidsoap to
switch immediately to live when it becomes available instead of waiting
for the end of the track currently played by s.

	Update your script

	Run the new radio

	Try to connect to the harbor mountpoint. You may use a separate liquidsoap script and output.icecast

	Why is the output still infallible ?

Solutions:

	radio.liq

	library.liq

Enabling shoutcast clients

By default, shoutcast source clients are not supported. You can enable them by
adding the following settings:

settings.harbor.icy.set(true)

Note ICY is the technical name of the original shoutcast source
protocol.

Additionally, the shoutcast source protocol does not support the notion
of mountpoint: all the sources try to connect to the same "/" mountpoint.
However, you can emulate this in liquidsoap by using different harbor sources
on different port.

For instance, if we replace the definition of live in radio.liq with the
following:

live1 = input.harbor(port=9000,"/")
live2 = input.harbor(port=7000,"/")

And the fallback line with:

s = fallback(track_sensitive=false, [live1,live2,s])

Then your a DJ should be able to send data using the port 9000
and another one using the port 7000, and the one connecting on port
9000 may be played in priority if the two are connected at the same time.

	Update your script

	Run the new radio

	Connect one source client to port 7000

	Connect another source client to port 9000

	Verify that the client on port 9000 is broadcasting

Solutions:

	radio.liq

	library.liq

A nice transition!

Now that our radio support live shows, we deal with another issue: when switching
to the live show, the current song is cut at the point where it is and the audio
content switches over to the live data without any transition, which is not very nice
for the listeners. Further, when switching back to the file-based source at the
end of the live, the source resumes in the middle of the song that was last played..

In this part, we define a transition for switching from file to live, which fades
the current song out and superposes a jingle before starting the live show.
We use the transition parameter of the fallback operators.

This parameter contains functions of the type: source * source -> source,
i.e. functions that take two sources as arguments, the old and new source,
and returned a source that is the result of the desired transition. Finally,
when defined as:

fallback(transition=[f,g], [s1, s2])

f is called when switching to s1 (and g when switching to s2).

We also use source.skip, which skips the file currently being played, in
order to play a fresh file when switching back to the file-based source.

First, we add the following code in library.liq:

Define a transition that fades out the
old source, adds a single, and then
plays the new source
def to_live(jingle,old,new) =
 # Fade out old source
 old = fade.final(old)
 # Superpose the jingle
 s = add([jingle,old])
 # Compose this in sequence with
 # the new source
 sequence([s,new])
end

A transition when switching back to files:
def to_file(old,new) =
 # We skip the file
 # currently in new
 # in order to being with
 # a fresh file
 source.skip(new)
 sequence([old,new])
end

Note source.skip may cause troubles if
the file source does not prepare a new track quickly enough.
In this case, you may add conservative=true to the
parameters of the request.dynamic.list source.

Then, we add the following code in radio.liq, where
we defined the fallback between the two live sources and
the file-based source:

The transition to live1
jingle1 = single("say:And now, we present the awesome show number one!!")
to_live1 = to_live(jingle1)

Transition to live2
jingle2 = single("say:Welcome guys, this is show two on My Awesome Radio!")
to_live2 = to_live(jingle2)

Combine lives and files:
s = fallback(track_sensitive=false,
 transitions=[to_live1, to_live2, to_file],
 [live1, live2, s])

	Update your script

	Run the new radio

	Connect to each harbor and listen to the result

Solutions:

	radio.liq

	library.liq

Custom logins

Another powerful feature of input.harbor is the possibility to define a
custom authentication. For instance, imagine that DJ Alice may connect to
the live1 source only between 20h and 21h, which is the time of her shows,
with the password "rabbit", while DJ Bob may connect to the live2 source
between 18h and 20h with password "foo".

This can be implemented using the auth parameter of input.harbor. This
parameter is a function of type: string * string -> bool, i.e. a function
that takes a pair (user,password) and returns true if the connection should
be granted.

You may use this, for instance, with an external script and integrate harbor
and DJ authentication into the framework of your choice. Here we illustrate
this functionality with a custom functions. Thus, we add the following
in library.liq:

Our custom authentication
Note: the ICY protocol
does not have any username and for
icecast, it is "source" most of the time
thus, we discard it
def harbor_auth(port,_,password) =
 # Alice connects on port 9000 between 20h and 21h
 # with password "rabbit"
 (port == 9000 and 20h-21h and password == "rabbit")
 or
 # Bob connection on port 7000 between 18h and 20h
 # with password "foo"
 (port == 7000 and 18h-20h and password == "foo")
end

And we use it by replacing the live1 and live2 definitions by:

Authentication for live 1:
auth1 = harbor_auth(9000)
live1 = input.harbor(port=9000,auth=auth1,"/")

Authentication for live 2:
auth2 = harbor_auth(7000)
live2 = input.harbor(port=7000,auth=auth2,"/")

	Write your custom login function

	Run and test your new radio

No solution here :-)

 Visualization

 This part is pretty open. We describe below a few advanced features of
liquidsoap, including video and midi. We provide some examples
or simply propose things to do, to give you an idea of what’s in
the near future of liquidsoap and hopefully draw you into
contributing to shaping that future,
if only through discussions.

Visualization

A liquidsoap script is like any other program: you can in principle
predict what it does, but there’s always a point where you miss something.
In such cases, you need to debug it: control all the relevant parameters
until you spot what’s wrong.

In liquidsoap, the most important parameter is probably the availability
of a source. You’ll end up creating devices dealing with various sources
going on and off. To test them you can create sources whose availability
is controlled by you, and you should also be able to monitor their
availability.

As an exercise, you can try to write a simple logging function that
periodically displays source.is_ready(s) for some source s.
The mix operator can be useful too: it is a mixing table for
liquidsoap, allowing you to monitor and cancel the availability
of its inputs; the best way to use it is through liGuidsoap.

Audio volume

You can visualize the audio volume on screen using visu.volume:

d = 1.
t = "lin"
s = fade.in(duration=d,type=t,
 fade.out(duration=d,type=t,sine(duration=3.*d)))
output.ao(visu.volume(s))

Video streams

Video may be used very simply in liquidsoap: common operators
such as single and playlist will attempt to decode their files
as video if their content type is appropriate, which is dictated by
the output operator.
For example you can do output.sdl(single("video.ogg"))
to display the video part of an audio+video stream;
to hear the audio part, insert your favorite audio output operator
together with drop_audio and drop_video at the right places
(most outputs do not silently drop irrelevant data).

Slideshow

The following script displays a slideshow of images,
while playing a playlist of audio files.
Pass it the images playlist/directory as the first argument on the command
line (after --) and (optionally) the audio playlist/directory as the
second argument.

def images
 video.fade.in(duration=1.,video.fade.out(duration=1.,
 video.add_text(metadata="filename","<no filename>",
 size=12,
 playlist(prefix="annotate:duration=3:",argv(1)))))
end

def sound
 playlist(argv(2))
end

output.ao(fallible=true,sound)
clock(id="video", output.sdl(fallible=true,images))

You can also combine the two in a Theora file.
Play the result in VLC rather than mplayer (or even liquidsoap)
as it is a sequentialized ogg stream.
output.file(%ogg(%vorbis,%theora),"slideshow.ogg",
mksafe(mux_video(video=images,sound)))

If you experience transparency problems… it’s a known bug
(see notably #393 [http://savonet.rastageeks.org/ticket/393]).
You may also experience segfaults… it does not seem to happen
with a selected list avoiding too large sizes or too exotic formats.

Audio volume

You can render the audio volume visualization as a video stream,
that you can then process as any other video stream:

d = 1.
t = "lin"
s = fade.in(duration=d,type=t,
 fade.out(duration=d,type=t,sine(duration=3.*d)))
output.sdl(drop_audio(video.volume(s)))

Static image over audio track

TODO: the youtube encoder

Transitions

Playing a video file video.ogv is simply achieved by

s = single("video.ogv")
output.sdl(s)

There are many useful (or not) effects in Liquidsoap which can be used to modify
the video. These should be inserted between the first and the second line of
the script above. For example, the image can be converted to sepia by adding

s = video.sepia(s)

Common operations include adding a logo (stored in a PPM image file
image.ppm):

s = video.add_image(width=30, height=30, x=10, y=10, file="image.ppm", s)

and displaying a scrolling text:

s = video.add_text("Hello people!", s)

Try modifying the scrolling text example so that you can modify the contents of
the text over the telnet interface.

Very similarly to audio transitions (fade in, fade out, etc.) there are some
video transitions implemented. For example fading in the video is simply done using

s = video.fade.in(s)

The kind of transition that should be used is controlled by the transition
parameter of video.fade.in. Try disc for example, as well as the others
that you can find in the documentation.

Of course, the add operator of liquidsoap also works on video streams. So, in
order to add a rotating image on a video you could use

s = add([s,
 video.rotate(
 video.add_image(
 width=50, height=50, x=150, y=150,
 file="image.ppm",
 blank()))])

Overloaded demo

file = single("bus.ogg")

istring = interactive.string

v = add([file,
 # video.text("Hello world..."),
 # video.text("Mip mip!",color=0xff0000,y=-1,speed=300),
 video.text(istring("a",""),color=0xff0000,font=mono,size=30,y=-01),
 video.text(istring("b",""),color=0xff0000,font=mono,size=30,y=-31),
 video.text(istring("c",""),color=0xff0000,font=mono,size=30,y=-61),
])

output.alsa(drop_video(file))

output.file.theora("out.ogv",
output.sdl(add([video.fade.in(video.fade.in(transition="disc",v)),
 # video.rotate(video.scale(coef=0.3,offset_x=20,offset_y=20,v)),
 video.image("chameau.pnm",width=50,height=50,
 x=-10,y=10,alpha=0xffffff),
]))

text = fun (v,s) -> ignore(server.execute('var.set #{v} = "#{s}"'))

def pingouin()
 text("c","(o_ ")
 text("b","//\\ ")
 text("a","v_/_")
end

def pan()
 text("c","(X_ ")
end

server.register("pingouin", fun (_) -> begin pingouin() "Oui seigneur..." end)
server.register("pan", fun (_) -> begin pan() "Zog zog!" end)

server.register("anim", fun (s) -> begin
 s = if s=="t" then
 pan()
 "f"
 else
 pingouin()
 "t"
 end
 add_timeout(1.,{ ignore(server.execute("anim #{s}")) (-1.) })
 "Done."
end)

Manipulating MIDI data

Playing with the keyboard

MIDI is a format for describing streams of notes, scores, etc. Liquidsoap has
a basic support for such streams.

In order to generate a MIDI stream, the input.keyboard.sdl operator can be
used. It will convert typing onto the keyboard of your operator into notes. In
order to be able to hear the notes of a stream, you have to synthesize them,
which means to convert them to wave sound. Various operators can be used for
this, each corresponding to a different instrument. For example, a synthesizer
with sawtooth waves is provided by the operator synth.saw. A mini-keyboard
synthesizer can thus be programmed using the following script

s = input.keyboard.sdl()
s = synth.saw(s)
out(s)

You can also test synth.sine or synth.square for other kinds of simple
sounds.

In order to check the MIDI data contained in streams, the midimeter operator
is very convenient: it prints on the standard output the notes currently being
played.

Playing MIDI files

Liquidsoap comes with built-in support for MIDI files: when such a file is
played it is detected as such and decoded as a MIDI stream. Usually, MIDI files
contain multiple channels of notes (typically one for each instrument). In order
to use the sawtooth synthesizer on all channels, the synth.all.saw operator
should be used (with the synth.saw operator, only the first channel will be
synthesized).

So, a MIDI file named file.mid can be played using the following script

s = single("file.mid")
s = midi.remove([9],s)
s = mux_audio(audio=blank(),s)
s = synth.all.saw(s)
s = drop_midi(s)
out(s)

The second line removes all the notes from the channel 9 which is usually used
for drums (and would thus sound bad with our basic synthesizer). The third line
adds an audio channel to the stream s, in which the sound will be synthesized.

Playing chords

The implementation of MIDI-related operators in Liquidsoap is still in early
stage and their implementation gives us the possibility to simply test new
ideas… we would be glad hear yours too!

For example, we thought it would be nice to be able to play chords in
Liquidsoap. This is actually pretty simple using metadata. First, describe your
sequence of chords in a file named chords.txt with the following contents:

1 "chord" "C"
2 "chord" "Am"
3 "chord" "F"
4 "chord" "G"

This file just contains a list of metadata: on each line, the first number
indicate when (in seconds) the metadata should occur, the string in second
indicates the name of the metadata (chord here) and the string in third
position indicates the value of the metadata (the chord to be played here). This
file format for metadata is supported natively by Liquidsoap. Now, the metadata
containing the chord names can be converted to MIDI notes by using the chord
operator. The sequence of chords above can thus be heard using the following
script:

s = single("chord.txt")
s = midi.chord(s)
s = mux_audio(audio=blank(),s)
s = synth.saw(s)
s = drop_midi(s)
out(s)

Open problems

If you feel like hacking seriously, here are some tasks
from the Savonet community.

Listener-sensitive radio

Write a script that checks whether an icecast mount point is being listened
to, and use it to switch a radio to some dummy source when nobody is
listening, and switch back to normal when listeners come back.
This can be useful to avoid using the hard drive when unnecessary
– it is noisy, calorific, and simply not so long-lived.

Liquidsoap script generator

Write a script (even better, a web page)
that generates a simple liquidsoap script with a few options:
input from playlist, live relay, output to icecast and/or soundcard.

Re-usable tools for radios

The open-source radio community needs re-usable tools that can be interfaced
with existing streamers: indexer, database generator, scheduler,
crossfading editor, etc.

 Liquidsoap execution phases

Liquidsoap execution phases

There are various stages of running liquidsoap:

	Parsing: read scripts and scripting expressions, can fail with syntax errors.

	Static analysis: infer the type of all expressions, leaves some type unknown and may fail with type errors.

	Instantiation: when script is executed, sources get created. Remaining unknown stream types are forced according to frame.*.channels settings, clocks are assigned (but unknown clocks may remain) and some sources are checked to be infallible. Each of these steps may raise an error.

	Collection: Unknown clocks become the default clock so that all sources are assigned to one clock. Active sources newly attached to clocks are initialized for streaming, shutdown sources are detached from their clocks, and clocks are started or destroyed as needed. Streaming has started.

Usually, liquidsoap is ran by passing one or several scripts and expressions to execute. Those expressions set up some sources, and outputs typically don’t change anymore. If those initially provided active sources fail to be initialized (invalid parameter, fail to connect, etc.) liquidsoap will terminate with an error.

It is however possible to dynamically create active sources,
through registered server commands, event handlers, etc.
They will be initialized and run as statically created ones.
In interactive mode (passing the --interactive option)
it is also possible to input expressions in a liquidsoap prompt,
and their execution can trigger the creation of new outputs.

Outputs can be deactivated using source.shutdown():
they will stop streaming and will be destroyed.

The full liquidsoap instance
can be shutdown using the shutdown() command.

 Playlist parsers

Playlist parsers

Liquidsoap supports various playlists formats. Those formats can be used
for playlist sources, input.http streams and manually using request.create.

Supported formats

Most supported playlists format are strict, which means that the decoder can be sure
that is has found a correct playlist for that format. Some other format, such as m3u,
however, may cause false positive detections.

All formats are identified by their mime-type or content-type. Supported formats are the following:

	Text formats:

	audio/x-scpls: PLS format [http://en.wikipedia.org/wiki/PLS_%28file_format%29], strict

	application/x-cue: CUE format [http://en.wikipedia.org/wiki/.cue], strict. This format’s usage is described below.

	audio/x-mpegurl, audio/mpegurl: M3U [http://en.wikipedia.org/wiki/M3u], non strict

	Xml formats:

	video/x-ms-asf, audio/x-ms-asx: ASX [http://en.wikipedia.org/wiki/Advanced_Stream_Redirector], strict

	application/smil, application/smil+xml, SMIL [http://en.wikipedia.org/wiki/Synchronized_Multimedia_Integration_Language], strict

	application/xspf+xml, XSPF [http://en.wikipedia.org/wiki/Xspf], strict

	application/rss+xml, Podcast [http://en.wikipedia.org/wiki/Podcast], strict

Usage

Playlist files are parsed automatically when used in a playlist or input.http operator. Each of
these two operators has specific options to specify how to pick up a track from the playlist, e.g.
pick a random track, the first one etc.

Additionally, you can also manually parse and process a playlist using request.create and request.resolve
and some programming magic. You can check the code source for playlist.reloadable in our standard library
for a detailed example.

Special case: CUE format

The CUE format originates from CD burning programs. They describe the set of tracks of a whole CD and
are accompanied by a single file containing audio data for the whole CD.

This playlist format can be used in liquidsoap, using a cue_cut operator. By default, the CUE playlist
parser will add metadata from cue-in and cue-out points for each track described in the playlist, which
you can then pass to cue_cut to play each track of the playlist. Something like:

cue_cut(playlist("/path/to/file.cue"))

You can find an example of using cue_cut with cue sheets here and a throughout
explanation of how seeking in liquidsoap works there.

The metadata added for cue-in and cue-out positions can be customized using the following
configuration keys:

settings.playlists.cue_in_metadata := "liq_cue_in"
settings.playlists.cue_out_metadata := "liq_cue_out"

 Presentations about Liquidsoap

Presentations about Liquidsoap

Liquidshop

In January 2021, we organized the Liquidshop, a workshop around
Liquidsoap [http://www.liquidsoap.info/liquidshop/], where you can find lots of
presentations around Liquidsoap.

In particular, Romain presented the main features of the upcoming Liquidsoap
2.0:

 Profiling scripts

Profiling scripts

Sometimes, some functions of your script are taking up time and you would like
to optimize those. We are not speaking here about the encoding of streams, which
usually takes the vast majority of the spent computing power, but of functions
written directly in Liquidsoap. In order to understand those better, Liquidsoap
has a profiler which records all the function calls. It can be enabled with

profiler.enable()

(or by passing the --profile commandline flag of Liquidsoap) and the
statistics can be obtained with

print(profiler.stats.string())

It will output something like

function self total calls

+ 0.359139919281 0.359139919281 302000
list.add 0.324638843536 442.74707818 202000
if 0.242718935013 442.951756954 102002
list.cons 0.230906486511 442.277146816 101000

where each lines consists of a function, the time spent in the functions, the
time spent in the function and the functions it has called and the number of
calls to the function.

 Prometheus reporting

Prometheus reporting

When compiled with optional support for mirage/prometheus [https://github.com/mirage/prometheus],
liquidsoap can export prometheus [https://prometheus.io/] metrics.

The basic settings to enable exports are:

Prometheus settings
settings.prometheus.server := true
settings.prometheus.server.port := 9090

Common metrics, namely gauge, counter and summary are provided via the script language, as well
as a specialized operator to track source’s latencies. A fully-featured implementation can be found at
mbugeia/srt2hls [https://github.com/mbugeia/srt2hls]

Basic operators

The 3 basic operators are:

	prometheus.counter

	prometheus.gauge

	prometheus.summary

They share a similar type and API, which is as follows:

(help : string,
 ?namespace : string,
 ?subsystem : string,
 labels : [string],
 string) ->
 (label_values : [string]) ->
 (float) -> unit

This type can be a little confusing. Here’s how it works:

	First, one has to create a metric factory of a given type. For instance:

is_playing_metric = prometheus.gauge(labels=["source"],"liquidsoap_is_playing")

	Then, the metric factory can be used to instantiate speific metrics by passing the label’s values:

playlist = playlist(id="playlist", ...)
set_playlist_is_playing = is_playing_metric(label_values=["radio"])

The returned function is a setter for this metric, i.e.

	For gauge metrics, it sets the gauge value

	For counter metrics, it increases the counter value

	For summary metrics, it registers an observation

Finally, the programmer can now use that callback to set the metric as desired. For instance here:

def check_if_ready(set_is_ready, source) =
 def callback() =
 if source.is_ready(source) then
 set_is_ready(1.)
 else
 set_is_ready(0.)
 end
 0.1
 end
 callback
end
thread.run.recurrent(delay=0.,check_if_ready(set_playlist_is_playing, playlist))

prometheus.latency

The prometheus.latency operator provides prometheus metrics describing the internal latency of a given
source. It is fairly easy to use:

s = (...)
prometheus.latency(s)

The metrics are computed over a sliding window that can be defined as a parameter of the operator. Exported metrics are:

Input metrics:
liquidsoap_input_latency{...} <value>
liquidsoap_input_max_latency{...} <value>
liquidsoap_input_peak_latency{...} <value>

Output metrics:
liquidsoap_outputput_latency{...} <value>
liquidsoap_output_max_latency{...} <value>
liquidsoap_output_peak_latency{...} <value>

Overall metrics:
liquidsoap_overall_latency{...} <value>
liquidsoap_overall_max_latency{...} <value>
liquidsoap_overall_peak_latency{...} <value>

The 3 different groups of values are:

	input: metrics related to the time it takes to generate audio data

	output: metrics related to the time it takes to output (encode and send) audio data

	overall: the sum of all previous two groups

Each group of metrics is divided into 3 subsets:

	Mean latency value over the sliding window

	Max latency value over the sliding window

	Peak latency since start

Latencies are reported over a frame’s duration, which is typically around 0.04 seconds. Thus, in a situation
where liquidsoap does not observe latency catch-ups, the overall mean latency liquidsoap_overall_latency should
always be near that value.

These metrics can be used to report and track the source of latencies and catch-ups while streaming.
Typically, if a source starts taking too much time to generate its audio data, this should be reflects in the
input latencies. Likewise for encoding and network output.

Keep in mind, however, that enabling these metrics can have a CPU cost. It is rather small with a couple of sources
but can increase with the number of sources being tracked. The user of these metrics is advised to keep track of
CPU usage while ramping up on using them.

OCaml specific metrics

The prometheus binding used by liquidsoap also exports default OCaml-related metrics. They are as follows:

ocaml_gc_allocated_bytes <value>
ocaml_gc_compactions <value>
ocaml_gc_heap_words <value>
ocaml_gc_major_collections <value>
ocaml_gc_major_words <value>
ocaml_gc_minor_collections <value>
ocaml_gc_top_heap_words <value>
process_cpu_seconds_total <value>

These metrics can be useful when debugging issues with liquidsoap, in particular to track is an observed increase in
memory usage is related to OCaml memory allocation or not. More than often, if the increase is not related to OCaml,
it can be safely assumed that the issue might come from an external library used by liquisoap.

 Protocols

Protocols

Protocols in liquidsoap are used to resolve requests URIs. The syntax is: protocol:arguments,
for instance: http://www.example.com, say:Something to say etc.

Most protocols are written using the script language. You can look at the file protocols.liq for a list
of them.

In particular, the process: protocol can use an external command to prepare resolve a request. Here’s an example
using the AWS command-line to download a file from S3:

def s3_protocol(~rlog,~maxtime,arg) =
 extname = file.extension(leading_dot=false,dir_sep="/",arg)
 [process_uri(extname=extname,"aws s3 cp s3:#{arg} $(output)")]
end
protocol.add("s3",s3_protocol,doc="Fetch files from s3 using the AWS CLI",
 syntax="s3://uri")

Each protocol needs to register a handler, here the s3_protocol function. This function takes
the protocol arguments and returns a list of new requests or files. Liquidsoap will then call
this function, collect the returned list and keep resolving requests from the list until it finds a
suitable file.

This makes it possible to create your own custom resolution chain, including for instance cue-points. Here’s an example:

def cue_protocol(~rlog,~maxtime,arg) =
 [process_uri(extname="wav",uri=uri,"ffmpeg -y -i $(input) -af -ss 10 -t 30 $(output)")]
end
protocol.add("cue_cut",cue_protocol)

This protocol returns 30s of data from the input file, stating at the 10s mark.

Likewise, you can apply a normalization program:

def normalization_protocol(~rlog,~maxtime,arg) =
 # "normalize" command here is just an example..
 [process_uri(extname="wav",uri=arg,"normalize $(inpuit)")]
end
protocol.add("normalize",normalization_protoco)

Now, you can push requests of the form:

normalize:cue_cut:http://www.server.com/file.mp3

and the file will be cut and normalized
before being played by liquidsoap.

When defining custom protocols, you should pay attention to two variables:

	rlog is the logging function. Messages passed to this function will be registered with the request and can be used to debug any issue

	maxtime is the maximum time (in UNIX epoch) that the requests should run. After that time, it should return and be considered timed out. You may want to read from protocols.liq to see how to enforce this when calling external processes.

 The theory behind Liquidsoap

header-includes: |
\DeclareUnicodeCharacter{03BB}{λ}
…

The theory behind Liquidsoap

Publications

Liquidsoap: a High-Level Programming Language for Multimedia Streaming

Many of the advanced features of the Liquidsoap language are described in
Liquidsoap: a High-Level Programming Language for Multimedia Streaming.
The article details in particular Liquidsoap’s handling of heterogeneous stream
contents (e.g. audio and video), as well as the model for clocks in the
language.

De la webradio lambda à la λ-webradio

The first published presentation of Liquidsoap was made in
De la webradio lambda à la λ-webradio
(Baelde D. and Mimram S. in proceedings of Journées Francophnes des Languages Applicatifs (JFLA), pages 47-61, 2008)
– yes, it’s in French, sorry. It gives a broad description of the Liquidsoap
tool and explains the theory behind the language, which is formalized as a
variant of the typed λ-calculus with labels and optional arguments. The
article describes the typing inference algorithm as well as some properties of
the language (confluence) and of typing (subject reduction, admissible rules,
termination of typed terms).

 Quickstart

Quickstart

The Internet radio toolchain

Liquidsoap is a general audio stream generator, but is mainly intended for Internet radios. Before starting with the proper Liquidsoap tutorial let’s describe quickly the components of the internet radio toolchain, in case the reader is not familiar with it.

The chain is made of:

	the stream generator (Liquidsoap, ices [https://www.icecast.org/ices/], or for example a DJ-software running on your local PC) which creates an audio stream (Ogg Vorbis or MP3);

	the streaming media server (Icecast [http://www.icecast.org], HLS [https://en.wikipedia.org/wiki/HTTP_Live_Streaming] (via a HTTP server), …) which relays several streams from their sources to their listeners;

	the media player (iTunes, VLC, a web browser, …) which gets the audio stream from the streaming media server and plays it to the listener’s speakers.

[image: assets/img/schema-webradio-inkscape.png]Internet radio toolchain

The stream is always passed from the stream generator to the server, whether or not there are listeners. It is then sent by the server to every listener. The more listeners you have, the more bandwidth you need.

If you use Icecast, you can broadcast more than one audio feed using the same server. Each audio feed or stream is identified by its “mount point” on the server. If you connect to the foo.ogg mount point, the URL of your stream will be http://localhost:8000/foo.ogg – assuming that your Icecast is on localhost on port 8000. If you need further information on this you might want to read Icecast’s documentation [http://www.icecast.org]. A proper setup of a streaming server is required for running Liquidsoap.

Now, let’s create an audio stream.

Starting to use Liquidsoap

We assume that you have a fully installed Liquidsoap. In particular the library stdlib.liq and its accompanying scripts should have been installed, otherwise Liquidsoap won’t know the operators which have been defined there.

Sources

A stream is built with Liquidsoap by using or creating sources. A source is a media stream containing audio and/or video, track marks and metadata. In the following picture we represent a stream which has at least three tracks (one of which starts before the snapshot), and a few metadata packets (notice that they do not necessarily coincide with new tracks).

[image: assets/img/stream.png]A stream

Liquidsoap provides many functions for creating sources from scratch (e.g. playlist), and also for creating complex sources by putting together simpler ones (e.g. switch in the following example). Eventually, sources are plugged into outputs (typically named output.*) which continuously pull the source’s content and output it to speakers, to a file, to a streaming server, etc. These outputs what brings life into your sources.

That source is fallible!

A couple of things can go wrong in your streaming system.
In Liquidsoap,
we say that a source is infallible if it is always available.
Otherwise, it is fallible, meaning that something could go wrong and the source would not be available.
By default, an output requires that its input source is infallible,
otherwise it complains that “That source is fallible!”

For example, a normal playlist is fallible.
Firstly, because it could contain only invalid files, or at least spend too
much time on invalid files to be able to prepare a valid one on time.
Moreover, a playlist could contain remote files, which may not
be accessible quickly at all times.
A queue of user requests is another example of fallible source.
Also, if file.ogg is a valid local file,
then single("file.ogg") is an infallible source.

When an output complains about its source being fallible, you have to turn it into
an infallible one. Many solutions are available.
The function mksafe takes a source and returns an infallible
source, streaming silence when the input stream becomes unavailable.
In a radio-like stream, silence is not the preferred solution, and you
will probably prefer to fallback on an infallible
“security” source:

fallback([your_fallible_source_here, single("failure.ogg")])

Finally, if you do not care about failures, you can pass the parameter
fallible=true to most outputs. In that case, the output
will accept a fallible source, and stop whenever the source fails
and restart when it is ready to produce data again.

One-line expressions

Liquidsoap is a scripting language. Many simple setups can be achieved by evaluating one-line expressions.

Playlists

In the first example we’ll play a playlist. Let’s put a list of audio files in
playlist.pls: one filename per line, lines starting with a # are
ignored. You can also put remote files’ URLs, if your liquidsoap has
support for the corresponding protocols.
Then just run:

liquidsoap 'output(playlist("playlist.pls"))'

Other playlist formats are supported, such as M3U and, depending on your
configuration, XSPF.
Instead of giving the filename of a playlist, you can also use a directory
name, and liquidsoap will recursively look for audio files in it.

Depending on your configuration, the output output will use AO, Alsa or OSS, or won’t do anything if you do not have support for these libs. In that case, the next example is for you.

Streaming out to a server

Note: in the following, we assume that you have installed the following optional dependencies:

	cry for icecast output

	vorbis for ogg/vorbis encoding

	ffmpeg for ffmpeg encoding

Liquidsoap is capable of playing audio on your speakers, but it can also send audio to a streaming server such as Icecast or Shoutcast.
One instance of liquidsoap can stream one audio feed in many formats (and even many audio feeds in many formats!).

You may already have an Icecast server. Otherwise you can install and configure your own Icecast server. The configuration typically consists in setting the admin and source passwords, in /etc/icecast2/icecast.xml. These passwords should really be changed if your server is visible from the hostile internet, unless you want people to kick your source as admins, or add their own source and steal your bandwidth.

We are now going to send an audio stream, encoded as Ogg Vorbis, to an Icecast server:

liquidsoap \
 'output.icecast(%vorbis,
 host = "localhost", port = 8000,
 password = "hackme", mount = "liq.ogg",
 mksafe(playlist("playlist.m3u")))'

The main difference with the previous is that we used output.icecast instead of output. The second difference is the use of the mksafe which turns your fallible playlist source into an infallible source.

If you want to use HLS instead for streaming, you can do:

liquidsoap \
 'output.file.hls(
 "/path/to/hls/directory",
 [("aac",
 %ffmpeg(
 format="mpegts",
 %audio(codec="aac", b="128k")
))],
 mksafe(playlist("playlist.m3u")))'

Once started, this will place all the files required for HLS stream into the local path "/path/to/hls/directory" which you can then server over HTTP.
The HLS output has many interesting options, including callbacks to upload its files and more. See the HLS Output page for more details.

Input from another streaming server

Liquidsoap can use another stream as an audio source. This may be useful if you do some live shows.

liquidsoap \
 'output(input.http("https://icecast.radiofrance.fr/fip-hifi.aac"))'

Input from the soundcard

If you’re lucky and have a working ALSA support, try one of these… but beware that ALSA may not work out of the box.

liquidsoap 'output.alsa(input.alsa())'

liquidsoap 'output.alsa(bufferize = false,
 input.alsa(bufferize = false))'

Other examples

You can play with many more examples. Here are a few more. To build your own,
lookup the API documentation to check what functions are available, and what parameters they accept.

Listen to your playlist, but normalize the volume
liquidsoap 'output(normalize(playlist("playlist_file")))'

... same, but also add smart cross-fading
liquidsoap 'output(crossfade(
 normalize(playlist("playlist_file"))))'

Script files

We have seen how to create a very basic stream using one-line expressions. If you need something a little bit more complicated, they will prove uneasy to manage. In order to make your code more readable, you can write it down to a file, named with the extension .liq (eg: myscript.liq).

To run the script:

liquidsoap myscript.liq

On UNIX, you can also put #!/path/to/your/liquidsoap as the first line of your script (”shebang”). Don’t forget to make the file executable:

chmod u+x myscript.liq

Then you’ll be able to run it like this:

./myscript.liq

Usually, the path of the liquidsoap executable is /usr/bin/liquidsoap, and we’ll use this in the following.

A simple radio

In this section, we build a basic radio station that plays songs randomly chosen from a playlist, adds a few jingles (more or less one every four songs), and output an Ogg Vorbis stream to an Icecast server.

Before reading the code of the corresponding liquidsoap script, it might be useful to visualize the streaming process with the following tree-like diagram. The idea is that the audio streams flows through this diagram, following the arrows. In this case the nodes (fallback and random) select one of the incoming streams and relay it. The final node output.icecast is an output: it actively pulls the data out of the graph and sends it to the world.

[image: assets/img/basic-radio-graph.png]Graph for 'basic-radio.liq'

#!/usr/bin/liquidsoap
Log dir
log.file.path.set("/tmp/basic-radio.log")

Music
myplaylist = playlist("~/radio/music.m3u")
Some jingles
jingles = playlist("~/radio/jingles.m3u")
If something goes wrong, we'll play this
security = single("~/radio/sounds/default.ogg")

Start building the feed with music
radio = myplaylist
Now add some jingles
radio = random(weights = [1, 4],[jingles, radio])
And finally the security
radio = fallback(track_sensitive = false, [radio, security])

Stream it out
output.icecast(%vorbis,
 host = "localhost", port = 8000,
 password = "hackme", mount = "basic-radio.ogg",
 radio)

What’s next?

You can first have a look at a more complex example. There is also a second tutorial about advanced techniques.

You should definitely learn how to get help.
If you know enough liquidsoap for your use, you’ll only need to refer to the
scripting reference, or see the cookbook.
At some point,
you might read more about Liquidsoap’s scripting language.
For a better understanding of liquidsoap,
it is also useful to read a bit about the notions of
sources and requests.

 RadioPi

RadioPi

RadioPi [http://www.radiopi.org] is the web radio of the ECP (Ecole Centrale de Paris). RadioPi runs many channels.
There are topical channels (Reggae, Hip-Hop, Jazz, …). On top of that, they periodically broadcast live shows,
which are relayed on all channels.

We met a RadioPi manager right after having released Liquidsoap 0.2.0, and he was seduced by the system. They needed
quite complex features, which they were at that time fulfilling using dirty tricks, loads of obfuscated scripts.
Using Liquidsoap now allow them to do all they want in an integrated way, but also provided new features.

The migration process

Quite easy actually. They used to have many instances Ices2, each of these calling a Perl script to get the next song.
Other scripts were used for switching channels to live shows.

Now they have this single Liquidsoap script, no more. It calls external scripts to interact with their web-based song
scheduling system. And they won new features: blank detection and distributed encoding.

The first machine gets its files from a ftp server opened on the second machine.
Liquidsoap handles download automatically.

Each file is given by an external script, radiopilote-getnext,
whose answer looks as follows (except that it’s on a single line):

annotate:file_id="3541",length="400.613877551",\
 type="chansons",title="John Holt - Holigan",\
 artist="RadioPi - Canal reggae",\
 album="Studio One SeleKta! - Album Studio 1 12",\
 canal="reggae":ftp://***:***@host/files/3541.mp3

Note that we use annotate to pass some variables to liquidsoap…

#!/usr/bin/liquidsoap

Standard settings
log.file.set(true)
log.file.path.set("/var/log/liquidsoap/pi.log")
log.stdout.set(false)
init.daemon.set(true)
init.daemon.pidfile.path.set("/var/run/liquidsoap/pi.pid")

Enable telnet server
settings.server.telnet.set(true)

Enable harbor for any external
connection
settings.harbor.bind_addrs.set(["0.0.0.0"])

Verbose logs
log.level.set(4)

We use the scheduler intensively,
therefore we create many queues.
settings.scheduler.generic_queues.set(5)
settings.scheduler.fast_queues.set(3)
settings.scheduler.non_blocking_queues.set(3)

=== Settings ===

The host to request files
stream = "XXXxXXXx"
The command to request files
scripts = "ssh XXxxxXXX@#{stream} '/path/to/scripts/"
A substitution on the returned path
sed = " | sed -e s#/path/to/files/#ftp://user:password@#{stream}/#'"

Enable replay gain
enable_replaygain_metadata ()

pass = "XXxXXXXx"
ice_host = "localhost"

descr = "RadioPi"
url = "http://radiopi.org"

=== Live ===

A live source, on which we strip blank (make the source
unavailable when streaming blank)
live =
 blank.strip(
 input.harbor(id="live", port=8000, password=pass,
 buffer=8.,max=20.,"live.ogg"),
 length=10., threshold=-50.)

This source relays the live data, when available,
to the other streamer, in uncompressed format (WAV)
output.icecast(%wav, host=stream,
 port=8005, password=pass,
 mount="live.ogg", fallible=true,
 live)

This source relays the live source to "live.ogg". This
is used for debugging purposes, to see what is sent
to the harbor source.
output.icecast(%vorbis, host="127.0.0.1",
 port=8080, password=pass,
 mount="live.ogg", fallible=true,
 live)

This source starts an archive of the live stream
when available
title = '$(if $(title),"$(title)",\
 "Emission inconnue")$(if $(artist), \
 " par $(artist)") - %m-%d-%Y, %H:%M:%S'
output.file(%vorbis, reopen_on_metadata=true,
 fallible=true,
 "/data/archives/brutes/" ^ title ^ ".ogg",
 live)

=== Channels ===

Specialize the output functions by partial application
output.icecast = output.icecast(description=descr, url=url)
out = output.icecast(host=ice_host,port=8080,password=pass,fallible=true)
out_aac32 = out(%fdkaac(bitrate=32))
out_aac = out(%fdkaac(bitrate=64))
out = out(%mp3)

A file for playing during failures
interlude =
 single("/home/radiopi/fallback.mp3")

Lastfm submission
def lastfm (m) =
 if (m["type"] == "chansons") then
 if (m["canal"] == "reggae" or m["canal"] == "Jazz" or m["canal"] == "That70Sound") then
 canal =
 if (m["canal"] == "That70Sound") then
 "70sound"
 else
 m["canal"]
 end
 user = "radiopi-" ^ canal
 lastfm.submit(user=user,password="xXXxx",m)
 end
 end
end

=== Basic sources ===

Custom crossfade to deal with jingles..
def crossfade (~start_next=5.,~fade_in=3.,~fade_out=3.,
 ~default=(fun (a,b) -> sequence([a, b])),
 ~high=-15., ~medium=-32., ~margin=4.,
 ~width=2.,~conservative=false,s)
 fade.out = fade.out(type="sin",duration=fade_out)
 fade.in = fade.in(type="sin",duration=fade_in)
 add = fun (a,b) -> add(normalize=false,[b, a])
 log = log(label="crossfade")

 def transition(a,b,ma,mb,sa,sb)

 list.iter(fun(x)-> log(level=4,"Before: #{x}"),ma)
 list.iter(fun(x)-> log(level=4,"After : #{x}"),mb)

 if ma["type"] == "jingles" or mb["type"] == "jingles" then
 log("Old or new file is a jingle: sequenced transition.")
 sequence([sa, sb])
 elsif
 # If A and B are not too loud and close, fully cross-fade them.
 a <= medium and b <= medium and abs(a - b) <= margin
 then
 log("Old <= medium, new <= medium and |old-new| <= margin.")
 log("Old and new source are not too loud and close.")
 log("Transition: crossed, fade-in, fade-out.")
 add(fade.out(sa),fade.in(sb))

 elsif
 # If B is significantly louder than A, only fade-out A.
 # We don't want to fade almost silent things, ask for >medium.
 b >= a + margin and a >= medium and b <= high
 then
 log("new >= old + margin, old >= medium and new <= high.")
 log("New source is significantly louder than old one.")
 log("Transition: crossed, fade-out.")
 add(fade.out(sa),sb)

 elsif
 # Opposite as the previous one.
 a >= b + margin and b >= medium and a <= high
 then
 log("old >= new + margin, new >= medium and old <= high")
 log("Old source is significantly louder than new one.")
 log("Transition: crossed, fade-in.")
 add(sa,fade.in(sb))

 elsif
 # Do not fade if it's already very low.
 b >= a + margin and a <= medium and b <= high
 then
 log("new >= old + margin, old <= medium and new <= high.")
 log("Do not fade if it's already very low.")
 log("Transition: crossed, no fade.")
 add(sa,sb)

 # What to do with a loud end and a quiet beginning ?
 # A good idea is to use a jingle to separate the two tracks,
 # but that's another story.

 else
 # Otherwise, A and B are just too loud to overlap nicely,
 # or the difference between them is too large and overlapping would
 # completely mask one of them.
 log("No transition: using default.")
 default(sa, sb)
 end
 end

 cross(width=width, duration=start_next, conservative=conservative,
 transition,s)
end

Create a radiopilote-driven source
def channel_radiopilote(~skip=true,name)
 log("Creating canal #{name}")

 # Request function
 def request () =
 log("Request for #{name}")
 ret = list.hd(process.read.lines(scripts^"radiopilote-getnext "^quote(name)^sed))
 log("Got answer: #{ret} for #{name}")
 [request.create(ret)]
 end

 # Create the request.dynamic.list source
 # Set conservative to true to queue
 # several songs in advance
 source =
 request.dynamic.list(conservative=true, length=400.,
 id="dyn_"^name,request,
 timeout=60.)

 # Apply normalization using replaygain
 # information
 source = amplify(1.,override="replay_gain", source)

 # Skip blank when asked to
 source =
 if skip then
 blank.skip(source, length=10., threshold=-40.)
 else
 source
 end

 # Submit new tracks on lastfm
 source = on_metadata(lastfm,source)

 # Tell the system when a new track
 # is played
 source = on_metadata(fun (meta) ->
 system(scripts ^ "radiopilote-feedback "
 ^quote(meta["canal"])^" "
 ^quote(meta["file_id"]) ^ "'"), source)

 # Finally apply a smart crossfading
 crossfade(source)
end

Basic source
jazz = channel_radiopilote("jazz")
discoqueen = channel_radiopilote("discoqueen")
Avoid skipping blank with classic music !!
classique = channel_radiopilote(skip=false,"classique")
That70Sound = channel_radiopilote("That70Sound")
metal = channel_radiopilote("metal")
reggae = channel_radiopilote("reggae")
Rock = channel_radiopilote("Rock")

Group those sources in a separate
clock (good for multithreading/multicore)
clock.assign_new([jazz,That70Sound,metal,reggae])

=== Mixing live ===

To create a channel from a basic source, add:
- a new-track notification for radiopilote
- metadata rewriting
- the live shows
- the failsafe 'interlude' source to channels
- blank detection
def mklive(source) =
 # Transition function: if transitioning
 # to the live, fade out the old source
 # if transitioning from live, fade.in
 # the new source. NOTE: We cannot
 # skip the current song because
 # reloading new songs for all the
 # sources when live starts costs too much
 # CPU.
 def trans(old,new) =
 if source.id(new) == source.id(live) then
 log("Transition to live!")
 add([new,fade.out(old)])
 elsif source.id(old) == source.id(live) then
 log("Transitioning from live!")
 add([fade.in(new),old])
 else
 log("Dummy transition")
 new
 end
 end
 fallback(track_sensitive=false,
 transitions=[trans,trans,trans],
 [live,source,interlude])
end

Create a channel using mklive(), encode and output it to icecast.
def mkoutput(~out=out,mount,source,name,genre)
 out(id=mount,mount=mount,name=name,genre=genre,
 mklive(source)
)
end

=== Outputs ===

mkoutput("jazz", jazz, "RadioPi - Canal Jazz","jazz")
mkoutput("discoqueen", discoqueen, "RadioPi - Canal DiscoQueen","discoqueen")
mkoutput("classique", classique, "RadioPi - Canal Classique","classique")
mkoutput("That70Sound", That70Sound,
 "RadioPi - Canal That70Sound","That70Sound")
mkoutput("metal", metal, "RadioPi - Canal Metal","metal")
mkoutput("reggae", reggae, "RadioPi - Canal Reggae","reggae")
mkoutput("Rock", Rock, "RadioPi - Canal Rock","Rock")

Test outouts
mkoutput(out=out_aac,"reggae.aacp", reggae, "RadioPi - Canal Reggae \
 (64 kbits AAC+ test stream)","reggae")
mkoutput(out=out_aac32,"reggae.aacp32", reggae, "RadioPi - Canal Reggae \
 (32 kbits AAC+ test stream)","reggae")

The other machine has a similar configuration except that files are local, but this is exactly the same for liquidsoap !

Using harbor, the live connects directly to liquidsoap, using port 8000 (icecast runs on port 8080).
Then, liquidsoap starts a relay to the other encoder, and both switch their channels to the new live.

Additionally, a file output is started upon live connection, in order to backup the stream. You could also add a relay to
icecast in order to manually check what’s received by the harbor.

 Liquidsoap scripting language reference

Liquidsoap scripting language reference

The Source / … categories contain all functions that return sources.
The Input functions are those which build elementary sources
(playing files, synthesizing sound, etc.).
The Output functions are those which take a source and register it
for being streamed to the outside (file, soundcard, audio server, etc.).
The Visualization functions are experimental ones that let you
visualize in real-time some aspects of the audio stream.
The Sound Processing functions are those which basically work on the source
as a continuous audio stream. They would typically be mixers of streams,
audio effects or analysis.
Finally, Track Processing functions are basically all
others, often having a behaviour that depends on or affects the extra
information that liquidsoap puts in streams: track limits and metadata.

 <no title>

 This release provides liquidsoap assets before they are published as a new versioned release.

You can use it to install the latest stable code before it is published and test/prepare your production environment for it.

Rolling releases can also be useful for us to quickly detect and report bugs before the final published release!

Assets listed in this release will never be modified or deleted. Feel free to use them for packaging or distribution purposes.

For more details about our release process, please checkout https://github.com/savonet/liquidsoap#release-details

 Normalization and ReplayGain

Normalization and ReplayGain

Normalization

If you want to have a constant average volume on an audio stream, you can use the normalize operator. However, this operator cannot guess the volume of the whole stream, and can be “surprised” by rapid changes of the volume. This can lead to a volume that is too low, too high, oscillates. In some cases, dynamic normalization also creates saturation.

To tweak the normalization, several parameters are available. These are listed and explained in the reference and also visible by executing liquidsoap -h normalize. However, if the stream you want to normalize consist of audio files, using the replay gain technology might be a better choice.

Replay gain

ReplayGain [https://en.wikipedia.org/wiki/ReplayGain] is a proposed standard that is (more or less) respected by many open-source tools. It provides a way to obtain an overall uniform perceived loudness over a track or a set of tracks. The computation of the loudness is based on how the human ear actually perceives each range of frequency. Having computed the average perceived loudness on a track or an album, it is easy to renormalize the tracks when playing, ensuring a comfortable, consistent listening experience.

Because it is track-based, replay gain does not suffer from the typical problems of stream-based, dynamic approaches. Namely, these distort the initial audio, since they constantly adapt the amplification factor. Sometimes it oscillates too quickly in a weird audible way. Sometimes it does not adapt quickly enough, leading to under or over-amplified sections.

Computing or retrieving replay gain information

The first step in order to use replay gain is to fetch or compute the appropriate normalization level for a given file.

Replay gain information can be found in various metadata fields depending on the audio format and the replay gain computation tool.
Liquidsoap provides a script for extracting the replay gain value which requires the ffmpeg binary.

There are two ways to use our replain gain script, one that works for all files and one that can be enabled on a
per-file basis, if you need finer grained control over replay gain.

Using the replay gain metadata resolver

The metadata solution is uniform: without changing anything, all your
files will have a new replaygain_track_gain metadata when the computation succeeded.

However, keep in mind that this computation can be costly and will be done each time a remote file is
downloaded to be prepared for streaming unless it already has the information pre-computed. For this
reason, it is recommended to pre-compute replay gain information as much as possible, specially
if you intent to stream large audio files.

The replay gain metadata resolver is not enabled by default. You can do it
by adding the following code to your script:

enable_replaygain_metadata()

Using the replaygain: protocol

The replaygain: protocol triggers replay gain retrieval or computation on
a per-file bases. To use it, you prefix your request URIs with it.

For instance, replacing /path/to/file.mp3 with replaygain:/path/to/file.mp3.

When resolving such a request, a call to our script will be issued,
resulting in your file having the extra replaygain_track_gain metadata.

Prepending replaygain: is easy if you are using a script
behind some request.dynamic.list operator. If you are using the
playlist operator, you can use its prefix parameter.

Protocols can be chained, for instance:

annotate:foo="bar":replaygain:/path/to/file.mp3

Applying replay gain information

After fetching or computing the replay gain information, the next step is to use it to correct the source’s volume.

The amplify() operator is used for that. This operator can be made to behave according to a given metadata, here the replaygain metadata. This is
done using the override parameter.

For replay gain implementation, the amplify operator would typically be added immediately on top of the basic tracks source, before transitions or other audio processing operators. Typically:

enable_replaygain_metadata()

s = playlist("~/playlist")
s = amplify(1.,override="replaygain_track_gain",s)

For convenience, we added the replaygain operator which performs the
amplification on the right metadata so that this can further be simplified to

enable_replaygain_metadata()

s = replaygain(playlist("~/playlist"))

 Common parameters

 Playing files is the most common way to build an audio stream.
In liquidsoap, files are accessed through requests,
which combine the retrieval of a possibly remote file, and its
decoding.

Liquidsoap provides several operators for playing requests:
single, playlist and playlist.safe,
request.dynamic.list, request.queue and request.equeue.
In a few cases (single with a local file,
or playlist.safe) a request operator will know
that it can always get a ready request instantaneously.
It will then be infallible.
Otherwise, it will have a queue of requests ready
to be played (local files with a valid content), and will
feed this queue in the background.
This process is described here.

Common parameters

Queued request sources maintain an estimated remaining time,
and trigger a new request resolution when this remaining time
goes below their length parameter.

The estimation is based on the duration of files prepared in the queue,
and the estimated remaining time in the currently playing file.
Precise file durations being expensive to compute, they are not
forced: if a duration is provided in the metadata it shall be used,
otherwise the default_length is assumed.

For example, with the default 10 seconds of wanted queue length,
the operator will only prepare a new file 10 seconds before
the end of the current one.

Up to liquidsoap 0.9.1, the estimated remaining time
in the current track was not taken into account.
With this behavior, each request-based source would keep at least
one song in queue, which was sometimes inconvenient.
This behavior can be restored by passing conservative=true,
which is useful in some cases:
it helps to ensure that a song will be ready in case of skip;
generally, it prepares things more in advance, which is good when
resolution is long (e.g., heavily loaded server, remote files).

Request.dynamic

This source takes a custom function for creating its new requests.
This function, of type ()->request,
can for example call an external program.

To create the request, the function will have
to use the request.create function which has type
(string,?indicators:[string]).
The first string is the initial URI of the request,
which is resolved to get an audio file.
The second argument can be used to directly specify the first row of URIs
(see the page about requests for more details),
in which case the initial URI is just here for naming,
and the resolving process will try your list of indicators one by one
until a valid audio file is obtained.

An example that takes the output of an external script as an URI
to create a new request can be:

def my_request_function() =
 # Get the first line of my external process
 result =
 list.hd(default="", process.read.lines("my_script my_params"))
 # Create and return a request using this result
 [request.create(result)]
end

Create the source
s = request.dynamic.list(my_request_function)

Queues

Liquidsoap features two sources which provide request queues that
can be directly manipulated by the user, via the server interface:
request.queue and request.equeue.
The former is a queued source where you can only push new requests,
while the later can be edited.

Both operators actually deal with two queues: primary and secondary queues.
The secondary queue is user-controlled.
The primary queue is the one that all queued request sources have,
its behavior is the same as described above, and it cannot be changed
in any way by the user.
Requests added to the secondary queue sit there until
the feeding process gets them and attempts to prepare them
and put them in the primary queue.
You can set how many requests will be in that primary queue
by tweaking the common parameters of all queued request sources.

The two sources are controlled via the command server.
They both feature commands for looking up the queues,
queuing new requests, and the equeue operator also allows
removal and exchange of requests in the secondary queue.

 An abstract notion of files: requests

An abstract notion of files: requests

The request is an abstract notion of file which can be conveniently used for defining powerful sources. A request can denote a local file, a remote file, or even a dynamically generated file. They are resolved to a local file thanks to a set of protocols. Then, audio requests are transparently decoded thanks to a set of audio and metadata formats.

The systematic use of requests to access files allows you to use remote URIs instead of local paths everywhere. It is perfectly OK to create a playlist for a remote list containing remote URIs: playlist("http://my/friends/playlist.pls")
.

The resolution process

The nice thing about resolution is that it is recursive and supports backtracking. An URI can be changed into a list of new ones, which are in turn resolved. The process succeeds if some valid local file appears at some point. If it doesn’t succeed on one branch then it goes back to another branch. A typical complex resolution would be:

	bubble:artist="bodom" _ ftp://no/where _ Error

	ftp://some/valid.ogg * /tmp/success.ogg

On top of that, metadata is extracted at every step in the branch. Usually, only the final local file yields interesting metadata (artist,album,…). But metadata can also be the nickname of the user who requested the song, set using the annotate protocol.

At the end of the resolution process, in case of a media request,
liquidsoap checks that the file is decodable,
i.e., there should be a valid decoder for it.

Each request gets assigned a request identifier (RID) which is used by
various sources to identify which request(s) they are using. Knowing
this number, you can monitor a request, even after it’s been destroyed
(see setting request.grace_time). Two server
commands are available: request.trace shows a log of
the resolution process and request.metadata shows the
current request metadata. In addition, server commands are available
to obtain the list of all requests, alive requests, currently resolving
requests and currently playing requests (respectively
request.all,
request.alive,
request.resolving,
request.on_air).

Currently supported protocols

	HTTP, HTTPS, FTP thanks to curl

	SAY for speech synthesis (requires festival): say:I am a robot resolves to the WAV file resulting from the synthesis.

	TIME for speech synthesis of the current time: time: It is exactly $(time), and you're still listening.

	ANNOTATE for manually setting metadata, typically used in annotate:nick="alice",message="for bob":/some/track/uri

The extra metadata can then be synthesized in the audio stream, or merged into the standard metadata fields, or used on a rich web interface…
It is also possible to add a new protocol from the script, as it is done with Beets for getting songs from a database query.

Currently supported formats

	MPEG-1 Layer II (MP2) and Layer III (MP3) through libmad and ocaml-mad

	Ogg Vorbis through libvorbis and ocaml-vorbis

	WAV

	AAC

	and much more through external decoders!

 <no title>

 This release provides liquidsoap assets before they are published as a new versioned release.

You can use it to install the latest stable code before it is published and test/prepare your production environment for it.

Rolling releases can also be useful for us to quickly detect and report bugs before the final published release!

⚠️ Warning ⚠️
Assets in this release will be deleted. If you are looking for permanent links to release assets, please head over to https://github.com/savonet/liquidsoap-release-assets/releases

For more details about our release process, please checkout https://github.com/savonet/liquidsoap#release-details

 Script loading

Script loading

When you run liquidsoap for streaming, the command line has the following form:

$ liquidsoap script_or_expr_1 ... script_or_expr_N

This allows you to ask liquidsoap to load definition and settings from
some scripts so that the become available when processing the next ones.

For example you can store your passwords by defined the variable xxx
in secret.liq, and then refer to that variable in your main script
main.liq. You would then run liquidsoap secret.liq main.liq. If you ever
need to communicate main.liq there won’t be any risk of divulgating your
password.

The pervasive script library

In fact, liquidsoap also implicitly loads scripts before those that you specify
on the command-line. These scripts are meant to contain standard utilities.
Liquidsoap finds them in LIBDIR/liquidsoap/VERSION where LIBDIR depends on
your configuration (it is typically /usr/local/lib or /usr/lib) and
VERSION is the version of liquidsoap (e.g. 0.3.8 or svn).

Currently, liquidsoap loads stdlib.liq from the library directory,
and this file includes some others.
You can add your personal standard library in that directory
if you find it useful.

 Seeking in liquidsoap

Seeking in liquidsoap

Starting with Liquidsoap 1.0.0-beta2, it is now possible to seek within sources!
Not all sources support seeking though: currently, they are mostly file-based sources
such as request.queue, playlist, request.dynamic.list etc..

The basic function to seek within a source is source.seek. It has the following type:

(source('a),float)->float

The parameters are:

	The source to seek.

	The duration in seconds to seek from current position.

The function returns the duration actually seeked.

Please note that seeking is done to a position relative to the current
position. For instance, source.seek(s,3.) will seek 3 seconds forward in
source s and source.seek(s,(-4.)) will seek 4 seconds backward.

Since seeking is currently only supported by request-based sources, it is recommended
to hook the function as close as possible to the original source. Here is an example
that implements a server/telnet seek function:

A playlist source
s = playlist("/path/to/music")

The server seeking function
def seek(t) =
 t = float_of_string(default=0.,t)
 log("Seeking #{t} sec")
 ret = source.seek(s,t)
 "Seeked #{ret} seconds."
end

Register the function
server.register(namespace=source.id(s),
 description="Seek to a relative position \
 in source #{source.id(s)}",
 usage="seek <duration>",
 "seek",seek)

Cue points

Sources that support seeking can also be used to implement cue points.
The basic operator for this is cue_cut. Its has type:

(?id:string,?cue_in_metadata:string,
 ?cue_out_metadata:string,
 source(audio='#a,video='#b,midi='#c))->
 source(audio='#a,video='#b,midi='#c)

Its parameters are:

	cue_in_metadata: Metadata for cue in points, default: "liq_cue_in".

	cue_out_metadata: Metadata for cue out points, default: "liq_cue_out".

	The source to apply cue points to.

The values of cue-in and cue-out points are given in absolute
position through the source’s metadata. For instance, the following
source will cue-in at 10 seconds and cue-out at 45 seconds on all its tracks:

s = playlist(prefix="annotate:liq_cue_in=\"10.\",liq_cue_out=\"45\":",
 "/path/to/music")

s = cue_cut(s)

As in the above example, you may use the annotate protocol to pass custom cue
points along with the files passed to Liquidsoap. This is particularly useful
in combination with request.dymanic as an external script can build-up
the appropriate URI, including cue-points, based on information from your
own scheduling back-end.

Alternatively, you may use metadata.map to add those metadata. The operator
metadata.map supports seeking and passes it to its underlying source.

 Interaction with the server

Interaction with the server

Liquidsoap starts with one or several scripts as its configuration, and then
streams forever if everything goes well. Once started, you can still interact
with it by means of the server. The server allows you to run commands. Some
are general and always available, some belong to a specific operator. For
example the request.queue() instances register commands to enqueue new
requests, the outputs register commands to start or stop the outputting, display
the last ten metadata chunks, etc.

The protocol of the server is a simple human-readable one. Currently it does not
have any kind of authentication and permissions. It is currently available via
two media: TCP and Unix sockets. The TCP socket provides a simple telnet-like
interface, available only on the local host by default. The Unix socket
interface (cf. the server.socket setting) is through some sort of virtual
file. This is more constraining, which allows one to restrict the use of the
socket to some privileged users.

You can find more details on how to configure the server in the
documentation of the settings key server, in particular
server.telnet for the TCP interface and server.socket for the Unix
interface. Liquidsoap also embeds some documentation about
the available server commands.

Using telnet

Now, we shall simply enable the Telnet interface to the server, by setting
settings.server.telnet := true or simply passing the -t option on the
command-line. In a complete case analysis we set up a
request.queue() instance to play user requests. It had the identifier
"queue". We are now going to interact via the server to push requests into
that queue:

dbaelde@selassie:~$ telnet localhost 1234
Trying 127.0.0.1...
Connected to localhost.localdomain.
Escape character is '^]'.
queue.push /path/to/some/file.ogg
5
END
request.metadata 5
[...]
END
queue.push http://remote/audio.ogg
6
END
request.trace 6
[...see if the download started/succeeded...]
END
exit

Of course, the server isn’t very user-friendly. But it is easy to write scripts
to interact with Liquidsoap in that way, to implement a website or an IRC
interface to your radio. However, this sort of tool is often bound to a specific
usage, so we have not released any of ours.

Web interface

Another simple way to test the telnet server consists in using the

server.harbor()

server.harbor api: https://www.liquidsoap.info/doc-2.0.0/reference-extras.html#server.harbor

command which will start a web interface accessible at
http://localhost:8000/telnet providing an emulation of a telnet.

Interactive variables

Sometimes it is useful to control a variable using telnet. A simple way to
achieve this is to use the interactive.float function. For instance, in order
to dynamically the volume of a source:

Register a telnet variable named volume with 1 as initial value
v = interactive.float("volume", 1.)

Change the volume accordingly
source = amplify(v, source)

The first line registers the variable volume on the telnet. Its value can be
changed using the telnet command

var.set volume = 0.5

and it can be retrieved using

var.get volume

Similarly, we can switch between two tracks using interactive.bool and
switch as follows:

Activate the telnet server
settings.server.telnet := true

The two sources
s1 = playlist("~/Music")
s2 = sine()

Create an interactive boolean
b = interactive.bool("button", true)

Switch between the tracks depending on the boolean
s = switch(track_sensitive=false,[(b,s1), ({true},s2)])

Output the result
output.pulseaudio(s)

By default the source s1 is played. To switch to s2, you can connect on
the telnet server and type var.set button = false.

Web interface

A nice web interface can be obtained by running

interactive.harbor()

interactive.harbor api: https://www.liquidsoap.info/doc-2.0.0/reference.html#interactive.harbor

after all interactive variables have been defined. This will start a web server
accessible at http://localhost:8000/interactive on which you can easily change
the values for the interactive variables.

Persistency

By default, interactive variables are not persistent, which means that their
values are lost if you restart the script. This can be changed by running the command

interactive.persistent("vars.json")

after all the interactive variables have been defined. This will store the
values of all the interactive variables in the file vars.json (in JSON format)
whenever you modify them, and reload them next time your run your script. This
can be very handy for setting parameters for sound effects for instance.

Securing the server

The command server provided by liquidsoap is very convenient for manipulating a
running instance of Liquidsoap. However, no authentication mechanism is
provided. The telnet server has no authentication and listens by default on the
localhost (127.0.0.1) network interface, which means that it is accessible to
any logged user on the machine.

Many users have expressed interest into setting up a secured access to the
command server, using for instance user and password information. While we
understand and share this need, we do not believe this is a task that lies into
Liquidsoap’s scope. An authentication mechanism is not something that should be
implemented naively. Being SSH, HTTP login or any other mechanism, all these
methods have been, at some point, exposed to security issues. Thus, implementing
our own secure access would require a constant care about possible security
issues.

Rather than doing our own home-made secure access, we believe that our users
should be able to define their own secure access to the command server, taking
advantage of a mainstream authentication mechanism, for instance HTTP or SSH
login. In order to give an example of this approach, we show here how to create
a SSH access to the command server: we create a SSH user that, when logging
through SSH, has only access to the command server.

First, we enable the unix socket for the command server in Liquidsoap:

settings.server.socket := true
settings.server.socket.path := "/path/to/socket"

When started, liquidsoap will create a socket file /path/to/socket
that can be used to interact with the command server. For instance,
if your user has read and write rights on the socket file, you can do

socat /path/to/socket -

The interface is then exactly the same has for the telnet server.

We define now a new ``shell’’. This shell is in fact the invocation of the socat command. Thus, we create a /usr/local/bin/liq_shell file with the following
content:

#!/bin/sh
We test if the file is a socket, readable and writable.
if [-S /path/to/socket] && [-w /path/to/socket] && \
 [-r /path/to/socket]; then
 socat /path/to/socket -
else
If not, we exit..
 exit 1
fi

We set this file as executable, and we add it in the list of shells in /etc/shells.

Now, we create a user with the liq_shell as its shell:

adduser --shell /usr/local/bin/liq_shell liq-user

You also need to make sure that liq-user has read and write rights
on the socket file.

Finally, when logging through ssh with liq-user, we get:

11:27 toots@leonard % ssh liq-user@localhost
liq-user@localhost's password:
Linux leonard 2.6.32-4-amd64 #1 SMP Mon Apr 5 21:14:10 UTC 2010 x86_64

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Tue Oct 5 11:26:52 2010 from localhost
help
Available commands:
(...)
| exit
| help [<command>]
| list
| quit
| request.alive
| request.all
| request.metadata <rid>
| request.on_air
| request.resolving
| request.trace <rid>
| uptime
| var.get <variable>
| var.list
| var.set <variable> = <value>
| version

Type "help <command>" for more information.
END
exit
Bye!
END
Connection to localhost closed.

This is an example of how you can use an existing secure access to
secure the access to liquidsoap’s command server. This way, you make sure
that you are using a mainstream secure application, here SSH.

This example may be adapted similarly to use an online HTTP login
mechanism, which is probably the most comment type of mechanism
intended for the command line server.

 Streaming to Shoutcast

Streaming to Shoutcast

Although Liquidsoap is primarily aimed at streaming to Icecast servers (that provide
much more features than Shoutcast), it is also able to stream to Shoutcast.

Shoutcast output

Shoutcast server accept streams encoded with the MP3 or AAC/AAC+ codec. You to compile Liquidsoap with
lame support, so it can encode in MP3. Liquidsoap also has support for AAC+ encoding
using FDK-AAC or using an external encoder. The recommended format is MP3.

Shoutcast output are done using the output.shoutcast operator with the appropriate parameters.
An example is:

source = single("audiofile.ogg")

output.shoutcast(%mp3, host="shoutcast.example.org",
 port=8000, password="changeme",
 source)

As usual, liquidsoap -h output.shoutcast gives you the full list of options for this operator.

Shoutcast as relay

A side note for those of you who feel they ``need’’ to use Shoutcast for non-technical reasons (such as their stream
directory service…): you can still benefit from Icecast’s power by streaming to an Icecast server, and then relaying
it through a shoutcast server.

In order to do that, you have to alias the root mountpoint (”/”) to your MP3 mountpoint in your icecast server
configuration, like this:

<alias source="/" dest="/mystream.mp3" />

Be careful that icecast often aliases the status page (/status.xsl) with the /. In this case, comment
out the status page alias before inserting yours.

 Sources

Sources

Using liquidsoap is about writing a script describing how to build what you
want. It is about building a stream using elementary streams and stream
combinators, etc. Actually, it’s a bit more than streams, we call them
sources.

A source is a stream with metadata and track annotations. It is discretized as
a stream of fixed-length buffers of media samples, the frames. Every frame may
have metadata inserted at any point, independently of track boundaries. At
every instant, a source can be asked to fill a frame of data.

The liquidsoap API provides plenty of functions for building sources.
Some of those functions build elementary sources from scratch, others are
operators that combine sources into more complex ones. An important class of
sources is that of active sources, they are the sources that actively
trigger the computation of your stream. Typically, active sources are built
from output functions, because outputting a stream is the only reason why you
want to compute it.

All sources, operators and outputs are listed in the
scripting API reference.

How does it work?

To clarify the picture let’s study in more details an example:

radio =
 output.icecast(
 %vorbis,mount="test.ogg",
 random(
 [jingle ,
 fallback([playlist1,playlist2,playlist3])]))

At every cycle of the clock, the output asks the random node for data,
until it gets a full frame of raw audio.
Then, it encodes the frame and sends it to the Icecast server.
Suppose random has chosen the fallback node,
and that only playlist2 is available, and thus played.
At every cycle, the buffer is passed from random to
fallback and then to playlist2 which fills it,
returns it to fallback which returns it to random
which returns it to the output.

At some point, playlist2 ends a track.
The fallback detects that on the returned buffer,
and selects a new child for the next filling,
depending on who’s available.
But it doesn’t change the buffer, and returns it to random,
which also (randomly) selects a new child at this point,
before returning the buffer to the output.
On next filling, the route of the frame can be different.

Note that it is also possible to have the route changed inside a track,
for example using the track_sensitive option of fallback,
which is typically done for instant switches to live shows when they start.

The important point here is that all of the above steps are local.
Everything takes place between one operator and its immediate children source;
operators do not see beyond that point.

Fallibility

By default, liquidsoap outputs are meant to emit a stream without
discontinuing. Since this stream is provided by the source passed to the
output operator, it is the source responsibility to never fail.
Liquidsoap has a mechanism to verify this, which helps you think of
all possible failures, and prevent them.
Elementary sources are either fallible or infallible, and this
liveness type is propagated through operators to finally
compute the type of any source.
For example,
a fallback or random source is infallible
if an only if at least one of its children is infallible,
and a switch is infallible if and only if it has one infallible
child guarded by the trivial predicate { true }.

On startup, each output checks the liveness type of its input source,
and issues an error if it is fallible. The typical fix for such problems
is to add one fallback to play a default file (single())
or a checked playlist (playlist.safe()) if the normal source
fails.
One can also use the mksafe operator that will insert silence
during failures.

If you do not care about failures, you can pass the parameter
fallible=true to most outputs. In that case, the output
will accept a fallible source, and stop whenever the source fails,
to restart when it is ready to emit a stream again.

Caching mode

In some situations, a source must take care of the consistency of its
output. If it is asked twice to fill buffers during the same cycle, it
should fill them with the same data. Suppose for example that a playlist is
used by two outputs, and that it gives the first frame to the first
output, the second frame to the second output: it would give the third frame
to the first output during the second cycle,
and the output will have missed one frame.

It is sometimes useful to keep this is mind to understand the behaviour
of some complex scripts. The high-level picture is enough for users,
more details follow for developers and curious readers.

The sources detect if they need to remember (cache) their previous output in
order to replay it. To do that, clients of the source must register in
advance. If two clients have registered, then caching should be enabled.
Actually that’s a bit more complicated, because of transitions. Obviously the
sources which use a transition involving some other source must register to
it, because they may eventually use it. But a jingle used in two transitions
by the same switching operator doesn’t need caching. The solution involves two
kinds of registering: dynamic and static activations. Activations are
associated with a path in the graph of sources’ nesting. The dynamic
activation is a pre-registration allowing a single real static activation
to come later, possibly in the middle of a cycle.
Two static activations trigger caching. The other reason for enabling caching
is when there is one static activation and one dynamic activation which
doesn’t come from a prefix of the static activation’s path. It means that the
dynamic activation can yield at any moment to a static activation and that the
source will be used by two sources at the same time.

Execution model

In your script you define a bunch of sources interacting together. Each
source belongs to a clock, but clocks only have direct access
to active sources, which are mostly outputs.
At every cycle of the clock, active sources are animated: a chunk of stream
(frame) is computed, and potentially outputted one way or another.

This streaming task is the most important and shouldn’t be disturbed.
Thus, other tasks are done in auxiliary threads:
file download, audio validity checking, http polling, playlist reloading…
No blocking or expensive call should be done in streaming threads.
Remote files are completely downloaded to a local temporary file
before use by the root thread. It also means that you shouldn’t access NFS
or any kind of falsely local files.

 Split and re-encode a CUE sheet.

Split and re-encode a CUE sheet.

CUE sheets are sometimes distributed along with a single audio file containing a whole CD.
Liquidsoap can parse CUE sheets as playlists and use them in your request-based sources.

Here’s for instance an example of a simple code to split a CUE sheet into several mp3 files
with id3v2 tags:

 # Log to stdout
 log.file.set(false)
 log.stdout.set(true)
 log.level.set(4)

 # Initial playlist
 cue = "/path/to/sheet.cue"

 # Create a reloadable playlist with this CUE sheet.
 # Tell liquidsoap to shutdown when we are done.
 x = playlist.reloadable(cue, on_done=shutdown)

 # We will never reload this playlist so we drop the first
 # returned value:
 s = snd(x)

 # Add a cue_cut to cue-in/cue-out according to
 # markers in "sheet.cue"
 s = cue_cut(s)

 # Shove all that to a output.file operator.
 output.file(%mp3(id3v2=true,bitrate=320),
 fallible=true,
 reopen_on_metadata=true,
 "/path/to/$(track) - $(title).mp3",
 s)

 Stereotool support

Stereotool support

Starting with version 2.2.0, liquidsoap supports the shared library distributed by Thimeo Audio Technology [https://www.thimeo.com/stereo-tool/]
using the stereotool operator (and track.audio.stereotool for the low-level, track-specific equivalent).

This feature is enabled in all release builds of liquidsoap starting with rolling-release-v2.2.x and should be enabled if you compile liquidsoap
with the optional ctypes-foreign opam module installed.

The operator can replace the use of the stereotool binary in your script and offers multiple benefits. In particular, it has a very low latency
compared to using the binary and also operates synchronously.

The operator should be quite easy to use. Here’s an example:

Define a source
s = ...

Apply stereotool to it:
s = stereotool(
 library_file="/path/to/stereotool/shared/lib",
 license_key="my_license_key",
 preset="/path/to/preset/file",
 s
)

That’s it! You can apply as many stereotool operators as you wish and at any stage in the script, thanks
to its synchronous nature. However, a current limitation is that the processed audio signal is slightly delayed.

This is because the operator has an internal processing buffer. We do plan on delaying metadata and track marks
to match this latency but this has not yet been implemented and will probably have to wait for the 2.3.x release cycle.

This means that, until then, track switches and metadata updates might happen slightly earlier than the corresponding
signal. We’re talking about 50ms to 100ms earlier, though, so that might not be a super big deal.

For the same reason, the source returned by stereotool is an audio-only source. Otherwise, other concurrent tracks
such as video and etc would be slightly out of sync. If you need to use the operator in this kind of situation, you
might want to use a ffmpeg filter to e.g. adjust the video’s PTS to match the audio delay.

In such case, you can refer to the latency method that is available on the source returned by the operator which
should indicate the delay to compensate from the processed audio signal.

The operator’s preset parameter has a companion load_type parameter that can optionally be used to only load a subset of
the preset. You might refer to the upstream documentation if you need to use it.

Lastly, stereotool is a proprietary software. While we actively promote open source, we also want to meet
our users where they are and, for a lot of them, this means supporting the sound processing provided by the tool.

However, to use it, you will need a license. Using the operator without the proper license will not result in an
error in your script but the audio signal might have spoken text and/or beeps added to it.

Using the operator with an invalid license will be reported in the logs. You might also use the valid_license
method available on the source returned by the operator, which returns false if the license is invalid. In this case, the unlincensed_used_features
method returns a string indicating which unlicensed features are being used.

 Stream contents

Stream contents

In liquidsoap, a stream may contain any number of audio, video and
MIDI channels. As part of the type checking of your script,
liquidsoap checks that you make a consistent use of stream contents,
and also guesses what kind of stream your script is intended to
work on. As with other inferred parameters, you do not necessarily
need to read about stream contents typing if you’re still learning
the ropes of liquidsoap, but you might eventually need to know a
little about it.

The content of a stream is described by the audio, video and MIDI
arities. An arity might be fixed or variable. Fixed arities are usual
natural numbers, described a number of channels that does change over
time. For example, the stream type (2,0,0) describes
streams that always have 2 audio channels and no channel of another
type. Variable arities describes numbers of channels that vary over
time. For example, the stream type (*,0,0) describes
a stream which contains only audio, but whose number of channels
might change at anytime – think of playing files, some of which
being stereo, some mono, and some videos without any audio content.
The stream type (*+1,0,0) also describes a variable
number of audio channels, but with the guarantee that there will
always be at least one.

In liquidsoap script language, there are three sorts of objects
that rely on stream types: sources, requests and encoding formats.
A source produces a stream,
and it is important what kind of stream
it produces when composing it with other sources.
A request is an abstract notion of file,
often meant to be decoded, and it is useful to know into what
kind of stream it is meant to be decoded.
Finally, a format describes how a stream
should be encoded (e.g., before output in a file or via icecast),
and the stream content is also useful here for the format
to make sense.

In this page, we explain how liquidsoap uses stream types
to guess and check what you’re doing.

Global parameters

You might have noticed that our description of stream contents is
missing some information, such as sample rate, video size, etc.
Indeed, that information is not part of the stream types, which is
local to each source/request/format, but global in liquidsoap.
You can change it using the frame.audio/video.*
settings, shown here with their default values:

audio.samplerate := 44100
video.frame.width := 320
video.frame.height := 240
video.frame.rate := 25

Checking stream contents

Checking the consistency of use of stream contents is done as part
of type checking. There is not so much to say here, except that you
have to read type errors. We present a few examples.

For example, if you try to send an ALSA input to a SDL input using
output.sdl(input.alsa()), you’ll get the following:

At line 1, char 22-23:
 this value has type
 source(audio=?A+1,video=0,midi=0)
 where ?A is a fixed arity type
 but it should be a subtype of
 source(audio=0,video=1,midi=0)

It means that a source with exactly onevideo channel was expected
by the SDL output, but the ALSA output can only offer sources
producing audio.
By the way,
?A+1 where ?A is fixed means that the ALSA input will
accept to produce any number of channels, fixed once for
all: it will attempt to initialize the soundcard with that number of
channels and report a runtime error if that fails.

Conversions

The above example did not make much sense, but in some cases you’ll
get a type error on seemingly meaningful code, and you’ll wonder how
to fix it. Often, it suffices to perform a few explicit conversions.

Consider another example involving the SDL output, where we also try
to use AO to output the audio content of a video:
liquidsoap output.ao(output.sdl(single("file.ogv"))).
This won’t work, because the SDL output expects a pure video stream,
but AO wants some audio. The solution is to split the stream in
two, dropping the irrelevant content:

s = single("file.ogv")
output.sdl(drop_audio(s))
output.ao(drop_video(s))

Currently, the video dropping is useless because AO tolerates
(and ignores) non-audio channels.

If you want to support both mono and stereo (and more) files within
the same playlist, you’ll need your playlist
or single instance to have type
source(*+1,0,0).
But this content type won’t be supported by most operators, which
require fixed arities. What you need to do is use audio_to_stereo
which will normalize your variable arity audio into a fixed stereo audio.

The last conversion is muxing.
It is useful to add audio/video channels to a pure video/audio stream.
See mux_video, mux_audio and mux_midi.

Type annotations

You now have all the tools to write a correct script.
But you might still be surprised by what stream content liquidsoap
guesses you want to use.
This is very important, because even if liquidsoap finds a type
for which it accepts to run, it might not run as you intend:
a different type might mean a different behavior
(not the intended number of audio channels, no video, etc).

Before reading on how liquidsoap performs this inference,
you can already work your way to the intended type by using type
annotations.

For example, with output.alsa(input.alsa()),
you’ll see that liquidsoap decides that stereo audio should be used,
and consequently the ALSA I/O will be initialized with two channels.
If you want to use a different number of channels,
for example mono, you can explicitly specify it using:

output.alsa((input.alsa():source(1,0,0)))

Guessing stream contents

When all other methods fail, you might need to understand a little more
how liquidsoap guesses what stream contents should be used for
each source.

First, liquidsoap guesses as much as possible
(without making unnecessary assumption) from what’s been given in the
script.
Usually, the outputs pretty much determine what sources should contain.
A critical ingredient here is often the
encoding format. For example, in

output.icecast(%vorbis,mount="some.ogg",s)

%vorbis has type format(2,0,0), hence s
should have type source(2,0,0). This works in more complex
examples, when the types are guessed successively for several intermediate
operators.

After this first phase, it is possible that some contents are still
undetermined. For example in output.alsa(input.alsa()),
any number of audio channels could work, and nothing helps us determine
what is intended. At this point, the default numbers of channels are
used. They are given by the setting
frame.audio/video/midi.channels (whose defaults are respectively
2, 0 and 0). In our example,
stereo audio would be chosen.

 A simple video script

A simple video script

The other day, I wanted to prepare some videos of my favorite reggae and soul
tunes for uploading them to YouTube.
My goal was very simple: prepare a video with the music,
and a static image.

After briefly digging for a simple software to do that,
which I could not find, I said ``hey, why not doing it with liquidsoap’’?
Well, that is fairly easy!

Here is the code:

log.level := 4

audio = once(single("/tmp/bla.mp3"))
video = single("/tmp/bla.jpg")

Mux audio and video
source = mux_video(video=video,audio)

Disable real-time processing, to process with the maximum speed
clock.assign_new(sync='none',[source])

Encode video and copy audio:
encoder = %ffmpeg(format="mp4",
 %audio.copy,
 %video(codec="libx264"))

 # Output to a theora file, shutdown on stop
 output.file(fallible=true,on_stop=shutdown,
 encoder, "/tmp/encoded-video.mp4",
 source)

 Encoding with FFmpeg

header-includes: |
\DeclareUnicodeCharacter{03C0}{π}
…

Basically streaming videos does not change anything compared to streaming audio:
you just have to use video files instead of sound files! For instance, if you
want to stream a single file to an icecast server in ogg format (with theora and
vorbis as codecs for audio and video) you can simply type:

source = single("video.mp4")

output.icecast(
 %ffmpeg(format="ogg",
 %audio(codec="libvorbis"),
 %video(codec="libtheora")
),
 host="localhost",
 port=8000,
 password="hackme",
 mount="/videostream",
 source)

And of course you could have used a playlist instead of single to have
multiple files, or used other formats for the stream.

In order to test a video stream, it is often convenient to use the output.sdl
operator (or output.graphics) which will open a window and display the video
stream inside. These can handle streams with video only, you can use the
drop_audio operator to remove the sound part of a stream if needed.

You should be expecting much higher resource needs (in cpu time in particular)
for video than for audio. So, be prepared to hear the fan of your computer! The
size of videos have a great impact on computations; if your machine cannot
handle a stream (i.e. it’s always catching up) you can try to encode to smaller
videos for a start.

Encoding with FFmpeg

The %ffmpeg encoder is the recommended encoder when working with video. Not only does it support a wide range
of audio and video formats but it can also send and receive data to many different places, using input.ffmpeg.
and output.url. On top of that, it also supports all the FFmpeg filters [https://ffmpeg.org/ffmpeg-filters.html]
and passing encoded data, if your script does not need re-encoding.

The syntax for the encoder is detailed in the encoders page. Here are some examples:

AC3 audio and H264 video encapsulated in a MPEG-TS bitstream
%ffmpeg(format="mpegts",
 %audio(codec="ac3",channel_coupling=0),
 %video(codec="libx264",b="2600k",
 "x264-params"="scenecut=0:open_gop=0:min-keyint=150:keyint=150",
 preset="ultrafast"))

AAC audio and H264 video encapsulated in a mp4 file (to use with
`output.file` only, mp4 container cannot be streamed!
%ffmpeg(format="mp4",
 %audio(codec="aac"),
 %video(codec="libx264",b="2600k"))

Ogg opus and theora encappsulated in an ogg bitstream
%ffmpeg(format="ogg",
 %audio(codec="libopus"),
 %video(codec="libtheora"))

Ogg opus and VP8 video encapsulated in a webm bitstream
%ffmpeg(format="webm",
 %audio(codec="libopus"),
 %video(codec="libvpx"))

Streaming with FFmpeg

The main input to take advantage of FFmpeg is input.ffmpeg. It should be able to decode pretty much any url and file that the ffmpeg command-line
can take as input. This is, in particular, how input.rtmp is defined.

For outputting, one can use the regular outputs but some of them have special features when used with %ffmpeg:

	output.file is able to properly close a file after it is done encoding it. This makes it possible to encode in formats that need a proper header after encoding is done, such as mp4.

	output.url will only work with the %ffmpeg encoder. It delegates data output to FFmpeg and can support any url that the ffmpeg command-line supports.

	output.file.hls and output.harbor.hls should only be used with %ffmpeg. The other encoders do work but %ffmpeg is the only encoder able to generate valid MPEG-TS and MP4 data segments for the HLS specifications.

Useful tips & tricks

Video is a really exciting world where there are lots of cool stuff to do.

Transitions

Transitions at the beginning or at the end of video can be achieved using
video.fade.in and video.fade.out. For instance, fading at the beginning of
videos is done by

source = video.fade.in(transition="fade",duration=3.,source)

Adding a logo

You can add a logo (any image) using the video.add_image operator, as follows:

source = video.add_image(
 width=30,height=30,
 x=10,y=10,
 file="logo.jpg",
 source)

Inputting from a webcam

If your computer has a webcam, it can be used as a source thanks to the
input.v4l2 operator. For instance:

output.sdl(input.v4l2())

Video in video

Suppose that you have two video sources source and source2 and you want to
display a small copy of source2 on top of source. This can be achieved by

source2 = video.scale(scale=0.2,x=10,y=10,source2)
source = add([source,source2])

Scrolling text

Adding scrolling text at the bottom of your video is as easy as

source = video.add_text.sdl(
 font="/usr/share/fonts/truetype/ttf-dejavu/DejaVuSans.ttf",
 "Hello world!", source)

You might need to change the font parameter so that it matches a font file
present on your system.

Effects

There are many of effects that you can use to add some fun to your videos:
video.greyscale, video.sepia, video.lomo, etc. Read the
documentation to find out about them. If you have compiled
Liquidsoap with frei0r [http://www.piksel.org/frei0r/] support, and have
installed frei0r plugins, they will be named video.frei0r.*. You can have a
list of those supported on your installation as usual, using liquidsoap --list-plugins.

Presenting weather forecast

You can say that a specific color should be transparent using
video.transparent. For instance, you can put yourself in front of a blue
screen (whose RGB color should be around 0x0000ff) and replace the blue screen
by an image of the weather using

